Potency to Recycle Hydrapulper Reject Waste of Paper Mill into Composite Particleboard

Andri Taufick Rizaluddin, Yusup Setiawan


Solid waste of paper mill hydrapulper reject (HR) has a relatively high plastic content, with around 45-49% composition of the total HR. About 99% of the plastic has the catagory of High Density Polyethylene (HDPE). HDPE is a type of Polyethylene (PE) plastic which has high recyclability and may be reformed at high temperature. This study tries to discribe the potential of producing particleboards derived from HR using a hot-press method. Molded HR was being hot-pressed at a presssure of 25 kgf/cm2for 5 – 15 minutes of residence time, with a variation of of the amount of HR from 150-500 gram, and variations in hot-press temperature of 150-180°C. The resulting product is then analyzed for parameters of moisture content, density, water absorption, thickness swelling, and internal bond compared to SNI 03-2105-2006 and JIS A 5908-2003. The results showed that most of the samples were relatively accepted to the SNI. The best results are obtained at HR weight of 250 gram with 165 and 180°C pressing temperature, and pressing time more than 10 minutes. The addition of HDPE pellets shows an increment of density and decrement of moisture content of particleboard, while the addition of MA shows some decrements of moisture content and water absoption of particleboard.


hydrapulper reject, HDPE, particleboard, fiber

Full Text:



Ashori AR. And Nourbakhsh A., 2014, Characteristics of Wood-fiber Plastics Composites Made of Recycled Materials, Waste Management 29L 1291-1295. DOI: 10.1016/j.wasman.2008.09.012

Atuanya CU., Ibhadode AOA., Igboanugo AC., 2011, Potential of using Recycled Low-density Polyethylene in Wood Composited Board, African Journal of Environmental Science and Technology Vol.5 (5): 389-396.

Faruk O., Matuana LM., 2008, Nanoclay Reinforced HDPE as a Matrix for Wood-plastic Composites, Composites Science and Technology 68: 2073-2077. DOI: 10.1016/j.compscitech.2008.03.004.

Fathanah U., 2011, Kualitas Papan Komposit dari Sekam Padi dan Plastik HDPE Daur Ulang Menggunakan Maleic Anhydrade (MAH) sebagai Compatibilizer, Jurnal Rekayasa Kimia dan Lingkungan Vol.8 (2): 53-59.

Gavrilescu D., 2008, Energy from Biomass in Pulp and Paper Mills, Environmental Engineering and Management Journal Vol.7 (5): 537-546.

Haynes RD., Malloch J., Cuddy K., Nicodimos E., 2009, Ask the Recycle Mill Gals, Progress in Paper Recycling Vol. 18 (3): 13-20.

Khanjanzadeh H., Bahmani AA., Rafighi A., Tabarsa T., 2012, Utilization of Bio-waste Cotton (Gossypium hirsutum L.) stalks and underutilized paulownia (pauwlownia fortunie) in Wood-based Composite Particleboard, African Journal of Biotechnology Vol 11 (31): 8045-8050.

Li B., Zheng Y., Pan Z., Hartsough B., 2009, Improved Properties of Medium-density Particleboard Manufactured from Saline Creeping Wild Rye and HDPE Plastic, Industrial Crops and Products 30: 65-71. DOI: 10.1016/j.indcrop.2009.01.006.

Matmatch, 2018, General Polyethylene, http://matmatch.com/compare/mbas004-general-polyethylene-low-density-pe-ld---vs--mbas008-general-polyethylene-high-density-pe-hd-?filters%5b0%5d%5btype%5d=text&filters%5b0%5d%5bfilterValue%5d=Polyethylene, accessed August 29, 2018.

Mawardi I., 2009, Mutu Papan Partikel dari Kayu Kelapa Sawit (KKS) Berbasis Perekat Polystyren, Jurnal Teknik Mesin Vol.11(2): 91-96.

Mishra S., Naik JB., Patil YP., 2000, The Compatibilising Effect of Maleic Anhydride on Swelling and Mechanical properties of Plant-fiber-reinforced Novolac Composites”, Composites Science and Technology 60: 1729-1735.

Muruganandam L., Ranjitha J., Harshavardhan A., 2016, A Review Report of Physical and Mechanical Properties of Particle Boards from Organic Waste, Journal of ChemTech Research Vol. 9 (1): 64-72.

Nourbakhsh A., Ashori A., 2010, Particleboard Made from Waste Paper Treated with Maleic Anhydride, Waste Management & Research 28: 51-55. DOI: 10.1177/0734242X09336463.

PubChem Open Chemistry Database, 2018, Maleic Anhydride, http://pubchem.ncbi. nlm.nih.gov/compound/maleic_anhydride#section=Top, accessed August 29, 2018.

Sapwan MA., Pickering KL., Fernyhough A. 2011, “Effect of Various Chemical Treatments on the Fibre Structure and Tensile Properties of Industrial Hemp Fibres”, Composites: Part A (42): 888-895. DOI: 10.1016/j.compositesa.2011.03.008.

Septiari IAPW., Karyasa IW., Kartowarsono N., 2014, Pembuatan Papan Partikel dari Limbah Plastik Polyprophylene (PP) dan Tangkai Bambu, e-Journal Kimia Visvitalis Vol 2 (1): 117-126.

Setiawan Y., Purwati S., Surachman A., Bastari IR., Hardiani H., 2014, Pelet Reject Industri Kertas sebagai Bahan Bakar Boiler, Jurnal Selulosa Vol.4 (2): 57-64.

Setiawan Y. and Surachman A., 2015, Reject Waste Pellets of Paper Mills as Fuels and their Contribution to Greenhouse Gas (GHG), International Journal of Technology 5: 847-855.

Sulastiningsih IM., Novitasari, Turoso A., 2006, Pengaruh Kadar Perekat Terhadap Sifat Papan Partikel Bambu, Jurnal Penelitian Hasil Hutan Vo.24 (1): 1-8.

Wardhani L., Massijaya MY., Machdie MF., 2013, Pemanfaatan Limbah Pelepah Sawit dan Plastik Daur Ulang (RPP) sebagai Papan Komposit Plastik, Jurnal Hutan Tropis Vol.1 (1): 46-53.

DOI: http://dx.doi.org/10.21771/jrtppi.2019.v10.no1.p1-11


  • There are currently no refbacks.

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.


 photo doaj_logo_zps1elblh0p.pngresearcherid photo Crossref_Logoresearcherid


Copyright of Research Journal of Industrial Pollution Prevention Technology (p-ISSN 2087-0965 | e-ISSN 2503-5010). Powered by OJS, Theme design credited to MEV edited by JRTPPI


           Creative Commons License