Produksi bio-oil dan bio-arang dari mata kayu industri pulp melalui pirolisis [Production of bio-oil and bio-char from knot in pulp mill through pyrolysis]

Syamsudin Syamsudin

Abstract


Acacia mangium knotis one of the biomass reject produced from the wood chemical pulping processes. This raw material is suitable for the production of bio-oil and bio-char in competitive costs. Utilization of the knot for the production of bio-oil and bio-char makes pulp mill as a bio-refining system with many profitable products because of increased income from bio-oil and bio-char and reduced costs for solid waste disposal. This study aims to evaluate the pyrolysis of knots from the kraft pulp mill to produce bio-oil and bio-char. Pyrolysis experiments of Acacia mangium knotwere carried out using laboratory-scale fluidized bed reactors at 400oC for 30 minutes. Acacia mangium knot contains volatile matterof 69.90% (dried basis) with a calorific value of 4279 kcal/kg (dried basis) has potency to produce bio-oil through the pyrolysis process. The TG-DTG analysis with heating rate of 10oC/min showed the pyrolysis reaction at temperature of 200oC-750oC resulting in a mass decreasing from 90% to 30% or around 85% of total conversion. The yield of bio-oil from fast pyrolysis was about 47%. Bio-oil contains high various organic compounds and dominated by acetic acid (21%) and 2-propanone (28%), and produced bio-char with a calorific value of 5763 kcal/kg (dried basis). Bio-char products could be used as a solid fuel in the combustion process or gasification process.


Keywords


knot; pulp mill; pyrolysis; bio-oil

Full Text:

PDF

References


Aho, A., Kumar, N., Eranen, K., Holmbom, B., Hupa, M., Salmi, T., & Murzin, D. Y. (2008). Pyrolysis of softwood carbohydrates in a fluidized bed reactor. International Journal of Molecular Sciences, 9(9), 1665–1675. https://doi.org/10.3390/ijms9091665.

Akhtar, J., & Saidina Amin, N. (2012). A review on operating parameters for optimum liquid oil yield in biomass pyrolysis. Renewable and Sustainable Energy Reviews, 16(7), 5101–5109. https://doi.org/10.1016/J.RSER.2012.05.033.

Alvarez, J., Lopez, G., Amutio, M., Artetxe, M., Barbarias, I., Arregi, A., … Olazar, M. (2016). Characterization of the bio-oil obtained by fast pyrolysis of sewage sludge in a conical spouted bed reactor. Fuel Processing Technology, 149, 169–175. https://doi.org/10.1016/J.FUPROC.2016.04.015.

Alvarez, J., Lopez, G., Amutio, M., Bilbao, J., & Olazar, M. (2014). Bio-oil production from rice husk fast pyrolysis in a conical spouted bed reactor. Fuel, 128, 162–169. https://doi.org/10.1016/J.FUEL.2014.02.074.

Butler, E., Devlin, G., Meier, D., & McDonnell, K. (2011). A review of recent laboratory research and commercial developments in fast pyrolysis and upgrading. Renewable and Sustainable Energy Reviews, 15(8), 4171–4186. https://doi.org/10.1016/j.rser.2011.07.035.

Dall’Ora, M., Jensen, P. A., & Jensen, A. D. (2008). Suspension Combustion of Wood: Influence of Pyrolysis Conditions on Char Yield, Morphology, and Reactivity. Energy & Fuels, 22(5), 2955–2962. https://doi.org/10.1021/ef800136b

Fu, P., Hu, S., Sun, L., Xiang, J., Yang, T., Zhang, A., & Zhang, J. (2009). Structural evolution of maize stalk/char particles during pyrolysis. Bioresource Technology, 100(20), 4877–4883. https://doi.org/10.1016/J.BIORTECH.2009.05.009.

Gavrilescu, D. (2008). Energy from biomass in pulp and paper mills. Environmental Engineering and Management Journal. Retrieved from http://omicron.ch.tuiasi.ro/EEMJ/.

Gonçalves, G. da C., Pereira, N. C., & Veit, M. T. (2016). Production of bio-oil and activated carbon from sugarcane bagasse and molasses. Biomass and Bioenergy, 85, 178–186. https://doi.org/10.1016/J.BIOMBIOE.2015.12.013.

Jahirul, M., Rasul, M., Chowdhury, A., & Ashwath, N. (2012). Biofuels Production through Biomass Pyrolysis —A Technological Review. Energies, 5(12), 4952–5001. https://doi.org/10.3390/en5124952.

Kaewluan, S., & Pipatmanomai, S. (2011). Potential of synthesis gas production from rubber wood chip gasification in a bubbling fluidised bed gasifier. Energy Conversion and Management, 52(1), 75–84. https://doi.org/10.1016/J.ENCONMAN.2010.06.044.

Lee, Y., Park, J., Ryu, C., Gang, K. S., Yang, W., Park, Y.-K., … Hyun, S. (2013). Comparison of biochar properties from biomass residues produced by slow pyrolysis at 500 °C. Bioresource Technology, 148, 196–201. https://doi.org/10.1016/J.BIORTECH.2013.08.135.

Ly, H. V., Kim, S.-S., Woo, H. C., Choi, J. H., Suh, D. J., & Kim, J. (2015). Fast pyrolysis of macroalga Saccharina japonica in a bubbling fluidized-bed reactor for bio-oil production. Energy, 93, 1436–1446. https://doi.org/10.1016/J.ENERGY.2015.10.011.

Monte, M. C., Fuente, E., Blanco, A., & Negro, C. (2009). Waste management from pulp and paper production in the European Union. Waste Management, 29(1), 293–308. https://doi.org/10.1016/J.WASMAN.2008.02.002.

Montoya, J. I., Valdés, C., Chejne, F., Gómez, C. A., Blanco, A., Marrugo, G., … Acero, J. (2015). Bio-oil production from Colombian bagasse by fast pyrolysis in a fluidized bed: An experimental study. Journal of Analytical and Applied Pyrolysis, 112, 379–387. https://doi.org/10.1016/J.JAAP.2014.11.007.

Nor Roslam Wan Isahak, W., Hisham, M. W., Ambar Yarmo, M., & Yun Hin, T. (2012). A review on bio-oil production from biomass by using pyrolysis method. https://doi.org/10.1016/j.rser.2012.05.039.

Rogers, J. G., & Brammer, J. G. (2012). Estimation of the production cost of fast pyrolysis bio-oil. Biomass and Bioenergy, 36(0), 208–217. https://doi.org/10.1016/j.biombioe.2011.10.028.

Ronsse, F., van Hecke, S., Dickinson, D., & Prins, W. (2013). Production and characterization of slow pyrolysis biochar: influence of feedstock type and pyrolysis conditions. GCB Bioenergy, 5(2), 104–115. https://doi.org/10.1111/gcbb.12018.

Solikhah, M. D., Pratiwi, F. T., Heryana, Y., Wimada, A. R., Karuana, F., Raksodewanto, A., & Kismanto, A. (2018). Characterization of Bio-Oil from Fast Pyrolysis of Palm Frond and Empty Fruit Bunch. IOP Conference Series: Materials Science and Engineering, 349, 012035. https://doi.org/10.1088/1757-899X/349/1/012035.

Syamsudin. (2015). Tinjauan pemanfaatan sludge cake pabrik pulp kraft sebagai energi alternatif melalui proses gasifikasi. Jurnal Selulosa, 5(01). https://doi.org/10.25269/jsel.v5i01.74.

Wang, S., Guo, X., Wang, K., & Luo, Z. (2011). Influence of the interaction of components on the pyrolysis behavior of biomass. Journal of Analytical and Applied Pyrolysis, 91(1), 183–189. https://doi.org/10.1016/J.JAAP.2011.02.006.

Wang, Z., Qin, M., Zhu, J. Y., Tian, G., & Li, Z. (2013). Evaluation energy efficiency of bioconversion knot rejects to ethanol in comparison to other thermochemically pretreated biomass. Bioresource Technology, 130, 783–788. https://doi.org/10.1016/J.BIORTECH.2012.12.058.

Xiu, S., & Shahbazi, A. (2012). Bio-oil production and upgrading research: A review. Renewable and Sustainable Energy Reviews, 16(7), 4406–4414. https://doi.org/10.1016/j.rser.2012.04.028.

Yang, H., Yan, R., Chen, H., Lee, D. H., & Zheng, C. (2007). Characteristics of hemicellulose, cellulose and lignin pyrolysis. Fuel, 86(12–13), 1781–1788. https://doi.org/10.1016/J.FUEL.2006.12.013.

Zhang, X., Tu, M., Paice, M., Sacciadis, G., Jiang, Z., Jemaa, N., & Thibault, A. (2010). Bioconversion of knot rejects from a sulphite pulp mill to ethanol. BioResources, 5(1), 23–42.

https://www.nh.gov/osi/resource-library/documents/bio-oil-commercialization-plan.pdf.Bio-oilcommercialization plan (diakses tanggal 27 Desember 2018).




DOI: http://dx.doi.org/10.24111/jrihh.v11i1.4325

Refbacks

  • There are currently no refbacks.




JRIHH INDEXED BY :

       
       


Published by BARISTAND INDUSTRI BANJARBARU (E-ISSN: 2503-0779 dan P-ISSN : 2086-1400).

 Creative Commons License