Penyisihan fosfat dari air limbah artifisial laundry memanfaatkan kulit jagung sebagai adsorben

Shinta Indah, Denny Helard, Siti Lathifatuzzahrah

Abstract


Air limbah laundry mengandung fosfat yang berpotensi mengakibatkan pencemaran air, jika tidak dikelola dengan baik. Penelitian ini bertujuan memanfaatkan kulit jagung sebagai adsorben untuk menyisihkan fosfat dari air limbah laundry. Penelitian dilakukan secara batch menggunakan larutan artifisial fosfat yang dibuat dari KH2PO4 anhidrat untuk mendapatkan kondisi optimum meliputi waktu kontak, pH dan konsentrasi adsorbat serta dosis dan diameter adsorben. Konsentrasi fosfat dianalisis menggunakan spektrofotometer UV-Vis pada panjang gelombang 880 nm. Kondisi optimum yang diperoleh dari proses adsorpsi adalah waktu kontak 60 menit, pH adsorbat 4, konsentrasi adsorbat 35 mg/L, dosis adsorben 20 g/L dan diameter adsorben 0,075-0,127 mm. Efisiensi penyisihan dan kapasitas adsorpsi pada kondisi optimum adalah 71,28% dan 1,247 mg/g. Persamaan isoterm yang sesuai berdasarkan data penelitian adalah isoterm Freundlich (R2=0,9944) dengan nilai Kf0,072 L/g dan nilai 1/n 2,366. Hal ini menunjukkan adsorpsi fosfat terjadi pada lapisan multilayer permukaan adsorben kulit jagung dan ikatan yang terbentuk adalah ikatan fisika. Hasil secara keseluruhan menunjukkan bahwa kulit jagung dapat dijadikan adsorben dalam penyisihan fosfat dari air limbah laundry.

Keywords


adsorben, adsorpsi, air limbah laundry, fosfat, kulit jagung

Full Text:

PDF (Indonesian)

References


Abuzar, S.S., Afrianita, R., Notrilauvia, N., 2012. Penyisihan minyak dan lemak limbah cair hotel menggunakan serbuk kulit jagung. J. Tek. Lingkung. UNAND 9, 13–25.

Abuzar, S.S., Dewilda, Y., Stefani, W., 2014. Analisis penyisihan Chemical Oxygen Demand (COD) limbah cair hotel menggunakan serbuk kulit jagung. J. Tek. Lingkung. UNAND 11, 18–27.

Apriliani, D.E., Narwati, Triastuti, E., 2017. Bioadsorben kulit jagung (Zea Mays ssp. mays) untuk menurunkan fosfat (PO43-) pada limbah cair. J. Penelit. Kesehat. Suara Forikes VIII, 235–240.

Atkins, P., Paula, J. De, Keeler, J., Atkins, P., Paula, J. De, 2018. Physical chemistry, 11th ed. Oxford University Express.

Barthélémy, K., Naille, S., Despas, C., Ruby, C., Mallet, M., 2012.

Carbonated ferric green rust as a new material for efficient phosphate removal. J. Colloid Interface Sci. 384, 121–127. https://doi.org/10.1016/j.jcis.2012.06.038

Chen, J., Cai, Y., Clark, M., Yu, Y., 2013. Equilibrium and kinetic studies of phosphate removal from solution onto a hydrothermally modified oyster shell material. PLoS One 8, 1–10. https://doi.org/10.1371/journal.pone.0060243

Darmadinata, M., Jumaeri, Sulistyaningsih, T., 2019. Pemanfaatan bentonit teraktivasi asam sulfat sebagai adsorben anion fosfat dalam air. Indones. J. Chem. Sci. 8, 1–8.

Eberhardt, T.L., Min, S.H., 2008. Biosorbents prepared from wood particles treated with anionic polymer and iron salt: Effect of particle size on phosphate adsorption. Bioresour. Technol. 99, 626–630. https://doi.org/10.1016/j.biortech.2006.12.037

Fagbemigun, T.K., Fagbemi, O.D., Otitoju, O., Mgbachiuzor, E., Igwe, C.C., 2014. Pulp and paper-making potential of corn husk. Int. J. AgriScience 4, 209–213.

Gu, Y., Yang, M., Wang, W., Han, R., 2019. Phosphate adsorption from solution by zirconium-loaded carbon nanotubes in batch mode. J. Chem. Eng. Data 64, 2849–2858. https://doi.org/10.1021/acs.jced.9b00214

Indah, S., Helard, D., Sasmita, A., 2016. Utilization of maize husk (Zea mays L.) as low-cost adsorbent in removal of iron from aqueous solution. Water Sci. Technol. 73, 2929–2935. https://doi.org/10.2166/wst.2016.154

Khodaie, M., Ghasemi, N., Moradi, B., Rahimi, M., 2013. Removal of methylene blue from wastewater by adsorption onto ZnCl2 activated corn husk carbon equilibrium studies. J. Chem. 2013. https://doi.org/10.1155/2013/383985

Lestari, P., Amri, C., Sudaryanto, S., 2017. Efektifitas jumlah pasangan elektroda aluminium pada proses elektrokoagulasi terhadap penurunan kadar fosfat limbah cair laundry. Sanitasi J. Kesehat. Lingkung. 9, 38. https://doi.org/10.29238/sanitasi.v9i1.36

Mallet, M., Barthélémy, K., Ruby, C., Renard, A., Naille, S., 2013. Investigation of phosphate adsorption onto ferrihydrite by X-ray photoelectron spectroscopy. J. Colloid Interface Sci. 407, 95–101. https://doi.org/10.1016/j.jcis.2013.06.049

Mekonnen, D.T., Alemayehu, E., Lennartz, B., 2020. Removal of phosphate ions from aqueous solutions by adsorption onto leftover coal. Water (Switzerland) 12, 1–15. https://doi.org/10.3390/W12051381

Namasivayam, C., Sangeetha, D., 2004. Equilibrium and kinetic studies of adsorption of phosphate onto ZnCl2 activated coir pith carbon. J. Colloid Interface Sci. 280, 359–365. https://doi.org/10.1016/j.jcis.2004.08.015

Nisa, A.H., Firdaust, M., Purnomo, B.C., 2019. Deskripsi kualitas dan kuantitas limbah cair usaha laundry di Kelurahan Sumampir Kecamatan Purwokerto Utara Kabupaten Banyumas tahun 2018. Bul. Keslingmas 38, 174–182. https://doi.org/10.31983/keslingmas.v38i2.4875

Saha, B., Chakraborty, S., Das, G., 2009. A mechanistic insight into enhanced and selective phosphate adsorption on a coated carboxylated surface. J. Colloid Interface Sci. 331, 21–26. https://doi.org/10.1016/j.jcis.2008.11.007

Sailah, I., Mulyaningsih, F., Ismayana, A., Puspaningrum, T., Adnan, A.A., Indrasti, N.S., 2020. Kinerja karbon aktif dari kulit singkong dalam menurunkan konsentrasi fosfat pada air limbah laundry. J. Teknol. Ind. Pertan. 30, 180–189.

Sinta, I.N., Suarya, P., Santi, S.R., 2015. Adsorpsi ion fosfat oleh lempung teraktivasi asam sulfat (H2SO4). J. Kim. 9, 217–225.

Sisyanreswari, H., Oktiawan, W., Rezagama, A., 2017. Penurunan TSS, BOD, dan fosfat pada limbah laundry menggunakan koagulan tawas dan media zeolit. J. Tek. Lingkung. 3, 1–11.

Smulders, E., Rähse, W., von Rybinski, W., Steber, J., Sung, E., Wiebel, F., 2007. Laundry detergents. Wiley_VCH Verlag. https://doi.org/10.1002/3527600450

Suharto, B., Anugroho, F., Putri, F.K., 2020. Degradation phosphate level of laundry wastewater using column adsorption with granular activated carbon (GAC) media. J. Sumberd. Alam dan Lingkung. 7, 36–46.

Tchobanoglous , H. Stensel, R.T. and F.B., 2014. Wastewater engineering: treatment and resource recovery, 5th ed. McGraw Hill.

William, D., Connell, O., Birkinshaw, C., Francis, T., Dwyer, O., 2008. Heavy metal adsorbents prepared from the modification of cellulose : A review. J. Bioresourses Technol. 99, 6709–6724. https://doi.org/10.1016/j.biortech.2008.01.036

Yan, L. guo, Yang, K., Shan, R. ran, Yan, T., Wei, J., Yu, S. jun, Yu, H. qin, Du, B., 2015. Kinetic, isotherm and thermodynamic investigations of phosphate adsorption onto core-shell Fe3O4@LDHs composites with easy magnetic separation assistance. J. Colloid Interface Sci. 448, 508–516. https://doi.org/10.1016/j.jcis.2015.02.048




DOI: http://dx.doi.org/10.24960/jli.v12i1.7504.33-40

Refbacks

  • There are currently no refbacks.





Our journal indexed by:




Copyright © Baristand Industri Padang, 2015. Powered By OJS

Theme design credited to MEV edited by JLI

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License