Isolasi dan identifikasi spesies mikroalga air tawar sebagai antioksidan dan antihiperglikemik

Anggela Marta Tasman, Abdi Dharma, Syafrizayanti Syafrizayanti

Abstract


Mikroalga memiliki kinerja yang hampir sama dengan tumbuhan bersel banyak, akan tetapi tidak memiliki akar, daun, dan batang untuk berfotosintesis. Mikroalga diibaratkan sebagai pabrik kecil dalam ukuran sel mikro yang mengubah karbondioksida menjadi material potensial. Penelitian ini bertujuan untuk mengisolasi mikroalga, mengidentifikasi spesiesnya secara morfologi dan molekuler, selanjutnya menentukan kandungan total fenolik, bioaktivitas antioksidan dan antihiperglikemik dari ekstrak mikroalga tersebut. Uji antioksidan dilakukan dengan metode DPPH dan uji antihiperglikemik dengan metode inhibitor enzim α-amilase. Mikroalga yang berhasil diisolasi termasuk dalam jenis Chlorella vulgaris. Ekstrak metanol dari biomassa kering mikroalga memberikan kandungan fenolik total paling tinggi yaitu sebesar 10,8 mg GAE/g jika dibandingkan ekstrak air (1,8 mg GAE/g) dan heksana (1,1 mg GAE/g). Nilai IC50 ekstrak metanol dalam menangkap radikal bebas DPPH adalah 75,9 µg/mL dan mampu menginhibisi 50% aktivitas enzim α-amilase pada konsentrasi 839,9 µg/mL. Berdasarkan hasil uji bioaktivitas ekstrak metanol mikroalga Chlorella vulgaris yang diisolasi dari perairan Sungai Kincir Kamba Tigo memiliki kemampuan yang rendah sebagai antioksidan dan antihiperglikemik.


Keywords


mikroalga; fenolik; antioksidan; antihiperglikemik

Full Text:

PDF (Indonesian)

References


Altschul, S.F., Madden, T.L., Schäffer, A.A., Zhang, J., Zhang, Z., Miller, W., Lipman, D.J., 1997. Gapped BLAST and PSI-BLAST : a new generation of protein database search programs. Nucleic Acid Res. 25, 3389–3402.

Anbudhasan, P., Surendraraj, A., Karkuzhali, S., Sathishkumaran, P., 2014. Natural antioxidants and its benefits. Int. J. Food Nutr. Sci. 3, 225–232.

Banskota, A.H., Sperker, S., Stefanova, R., McGinn, P.J., O’Leary, S.J.B., 2019. Antioxidant properties and lipid composition of selected microalgae. J. Appl. Phycol. 31, 309–318. https://doi.org/10.1007/s10811-018-1523-1

Chisti, Y., 2007. Biodiesel from microalgae. Biotechnol. Adv. 25, 294–206. https://doi.org/10.1016/B978-0-08-101023-5.00010-8

Ghanbari, R., Zarei, M., Ebrahimpour, A., Abdul-Hamid, A., Ismail, A., Saari, N., 2015. Angiotensin-I converting enzyme (ACE) inhibitory and anti-oxidant activities of sea cucumber (actinopyga lecanora) hydrolysates. Int. J. Mol. Sci. 16, 28870–28885. https://doi.org/10.3390/ijms161226140

Gürlek, C., Yarkent, Ç., Köse, A., Tuğcu, B., Gebeloğlu, I.K., Öncel, S., Elibol, M., 2019. Screening of antioxidant and cytotoxic activities of several microalgal extracts with pharmaceutical potential. Health Technol. (Berl). https://doi.org/10.1007/s12553-019-00388-3

Hajimahmoodi, M., Faramarzi, M.A., Mohammadi, N., Soltani, N., Oveisi, M.R., Nafissi-Varcheh, N., 2010. Evaluation of antioxidant properties and total phenolic contents of some strains of microalgae. J. Appl. Phycol. 22, 43–50. https://doi.org/10.1007/s10811-009-9424-y

Hegewald, E., Hanagata, N., 2017. Phylogenetic studies on Scenedesmaceae (Chlorophyta). Arch. Hydrobiol. Suppl. Algol. Stud. 29, 2017. https://doi.org/10.1127/algol

Hernandi, R., Dharma, A., Armaini, A., 2019. Penapisan, isolasi, dan karakterisasi mikroalga yang berpotensi sebagai sumber biodiesel dari perairan Danau Kerinci, Jambi. J. Litbang Ind. 9, 11–16.

Humbert, J.F., Dorigo, U., Be, A., 2002. Comparison of eukaryotic phytobenthic community composition in a polluted river by partial 18S rRNA gene cloning and sequencing. Microb. Ecol. 372–380. https://doi.org/10.1007/s00248-002-2024-x

Lai, H.Y., Lim, Y.Y., 2011. Evaluation of antioxidant activities of the methanolic extracts of selected ferns in Malaysia. Int. J. Environtmental Sci. Dev. 2, 442–447.

Mcdougall, G.J., Shpiro, F., Dobson, P., Smith, P., Blake, A., Stewart, D., Crop, S., 2002. Different polyphenolic components of soft fruits inhibit α -amylase and α -glucosidase. Qual. Heal. Nutr. 5196.

Murugesan S, M, A.B., S, B., M, K., S, D.T., 2015. In vitro antidiabetic activity of methanolic extracts of selected marine algae. Eur. J. Pharm. Med. Res. 2, 256–260.

Nair, S.S., Kavrekar, V., Mishra, A., 2013. In vitro studies on alpha amylase and alpha glucosidase inhibitory activities of selected plant extracts. Eur. J. Exp. Biol. 3, 128–132.

Narayanan, G.S., Kumar, G., Seepana, S., Elankovan, R., Arumugan, S., Premalatha, M., 2018. Isolation, identification and outdoor cultivation of thermophilic freshwater microalgae Coelastrella sp. FI69 in bubble column reactor for the application of biofuel production. Biocatal. Agric. Biotechnol. https://doi.org/10.1016/j.bcab.2018.03.022

Palanisamy, U., Manaharan, T., Teng, L.L., Radhakrishnan, A.K.C., Subramaniam, T., Masilamani, T., 2011. Rambutan rind in the management of hyperglycemia. Food Res. Int. 44, 2278–2282. https://doi.org/10.1016/j.foodres.2011.01.048

Procházková, G., Brányiková, I., Zachleder, V., Brányik, T., 2013. Effect of nutrient supply status on biomass composition of eukaryotic green microalgae. Appl. Phycol. https://doi.org/10.1007/s10811-013-0154-9

Putri, M., Chaidir, Z., Syafrizayanti, 2016. Isolasi dan identifikasi mikroalga yang terdapat di perairan Lembah Harau Payakumbuh, Sumatera Barat sebagai salah satu agen penghasil senyawa antibakteri. Universitas Andalas.

Rahul, V., Agrawal, P., Sharma, M., Shukla, S., 2016. Total phenolics, flavonoids and antioxidant potential of organic extract of fresh water algal sample collected from a marine lake. Indian J. Geo-Marine Sci. 45, 1320–1326.

Rukmana, S., 2015. Perbandingan sekuense kapang Trichoderma sp. berdasarkan internal transcribed spacer (ITS) rDNA dengan menggunakan data base NCBI. Biol. Fak. Sains Dan Teknol. Univ. Malik Ibrahim Malang 3, 54–67.

Safafar, H., Wagenen, J. Van, Møller, P., Jacobsen, C., 2015. Carotenoids, phenolic compounds and tocopherols contribute to the antioxidative properties of some microalgae species grown on industrial wastewater. Mrine drugs 13, 7339–7356. https://doi.org/10.3390/md13127069

Sales, P.M. de, Souza, P.M. de, Dartora, M., Resck, I.S., Simeoni, L.A., Fonseca-Bazzo, Y.M., Magalhaes, P. de O., Silveira, D., 2017. Pouteria torta epicarp as a useful source of α-amylase inhibitor in the control of type 2 diabetes. Food Chem. Toxicol. 109, 962–969. https://doi.org/10.1016/j.fct.2017.03.015

Saputro, T.B., Purwani, K.I., Ermavitalini, D., Saifulloh, A.F., 2019. Isolation of high lipid content microalgae from Wonorejo river, Surabaya, Indonesia and its identification using rbcL marker gene. Biodiversitas 20, 1380–1388. https://doi.org/10.13057/biodiv/d200530

Schroeter, H., Boyd, C., Spencer, J.P.E., Williams, R.J., Cadenas, E., Rice-Evans, C., 2002. MAPK signaling in neurodegeneration: Influences of flavonoids and of nitric oxide. Neurobiol. Aging 23, 861–880. https://doi.org/10.1016/S0197-4580(02)00075-1

Selvarajan, R., Felföldi, T., Tauber, T., Sanniyasi, E., Sibanda, T., Tekere, M., 2015. Screening and evaluation of some green algal strains (Chlorophyceae) isolated from freshwater and soda lakes for biofuel production. Energies 8, 7502–7521. https://doi.org/10.3390/en8077502

Setyani, W., Setyowati, H., Palupi, D.H.S., Rahayunnissa, H., Hariono, M., 2019. Antihyperlipidemia and antihyperglycemic studies of Arcangelisia flava (L.) merr. phenolic compound: incorporation of in vivo and in silico study at molecular level. Indones. J. Pharm. Sci. Technol. 6, 84. https://doi.org/10.24198/ijpst.v6i2.20211

Shanab, S.M.M., Mostafa, S.S.M., Shalaby, E.A., Mahmoud, G.I., 2012. Aqueous extracts of microalgae exhibit antioxidant and anticancer activities. Asian Pac. J. Trop. Biomed. 2, 608–615. https://doi.org/10.1016/S2221-1691(12)60106-3

Singh, S.P., Singh, P., 2015. Effect of temperature and light on the growth of algae species : A review. Renew. Sustain. Energy Rev. 50, 431–444. https://doi.org/10.1016/j.rser.2015.05.024

Spiden, E.M., Scales, P.J., Yap, B.H.J., Kentish, S.E., Hill, D.R.A., Martin, G.J.O., 2015. The effects of acidic and thermal pretreatment on the mechanical rupture of two industrially relevant microalgae : Chlorella sp . and Navicula sp . ALGAL 7, 5–10. https://doi.org/10.1016/j.algal.2014.11.006

Sugiwati, S., Kardono, L.B.S., Bintang, M., 2006. α-Glucosidase inhibitory activity and hypoglycemic effect of Phaleria macrocarpa fruit pericarp extracts by oral administration to rats. J. Appl. Sci. https://doi.org/10.3923/jas.2006.2312.2316

Sylvie, D.D., Anatole, P.C., Cabral, B.P., Veronique, P.B., 2014. Comparison of in vitro antioxidant properties of extracts from three plants used for medical purpose in Cameroon: Acalypha racemosa, Garcinia lucida and Hymenocardia lyrata 4, S625–S632. https://doi.org/10.12980/APJTB.4.201414B168

Yingying, S., Hui, W., Ganlin, G., Yinfang, P., Binlun, Y., 2014. The isolation and antioxidant activity of polysaccharides from the marine microalgae Isochrysis galbana. Carbohydr. Polym. 113, 22–31. https://doi.org/10.1016/j.carbpol.2014.06.058




DOI: http://dx.doi.org/10.24960/jli.v10i1.5956.61-71

Refbacks

  • There are currently no refbacks.




Copyright (c) 2020 Anggela marta tasman, Abdi Dharma, Syafrizayanti Syafrizayanti


Our journal indexed by:




Copyright © Baristand Industri Padang, 2015. Powered By OJS

Theme design credited to MEV edited by JLI

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License