STUDI PEMBUATAN BIOKOMPOSIT DARI LIMBAH TEPUNG Manihot esculenta cranzt DENGAN PENGUAT SERAT BATANG SEMU PISANG
Abstract
Keywords
Full Text:
PDFReferences
Mohanty, A.K., Misra, M. and Drzal, L.T.
(2002). Sustainable bio-composites from
renewable resources: opportunities and
challenges in the green materials world. Journal
of Polymers and the Environment, 10(1),
pp.19-26
Pandey, A., Soccol, C.R., Nigam, P., Soccol,
V.T., Vandenberghe, L.P. and Mohan, R.,
(2000). Biotechnological potential of agroindustrial residues. II: Pati. Bioresource
technology, 74(1), pp.81-87.
Pulungan, M.H., Hidayat, N., Wafa, A. and
Wardina, K., (2018). Pendayagunaan Pati
Singkong dan Tepung Kulit Singkong sebagai
Bahan Pembuatan Plastik Biodegradable
(Kajian Rasio Pati Singkong dan Tepung Kulit
Singkong). In Prosiding Seminar Nasional
Kulit, Karet dan Plastik (Vol. 7, No. 1).
Farias, F.O., Jasko, A.C., Colman, T.A.D.,
Pinheiro, L.A., Schnitzler, E., Barana, A.C. and
Demiate, I.M. (2014). Characterisation of Pati
and composites prepared by blending with lowdensity polyethylene. Brazilian Archives of
Biology and Technology, 57(6), pp.821-830
Kampeerapappun, P., Aht-ong, D., Pentrakoon,
D. and Srikulkit, K. (2007). Preparation of
cassava starch/montmorillonite composite film.
Carbohydrate Polymers, 67(2), pp.155-163
Detduangchan, N., Sridach, W. and Wittaya,
T., (2014). Enhancement of the properties of
biodegradable rice starch films by using
chemical crosslinking agents. International
Food Research Journal, 21(3).
Martin, O. and Avérous, L (2001). Poly (lactic
acid): plasticization and properties of
biodegradable multiphase systems. Polymer,
(14), pp.6209-6219
Bénézet, J.C., Stanojlovic-Davidovic, A.,
Bergeret, A., Ferry, L. and Crespy, A., (2012).
Mechanical and physical properties of
expanded starch, reinforced by natural fibres.
Industrial Crops and Products, 37(1), pp.435-
Subagyo, A. and Chafidz, A. (2018). Banana
pseudo-stem fiber: Preparation, characteristics,
and applications. Banana nutrition-function and
processing kinetics, pp.1-19.
Kumar, P.R., Srivastava, S., Singh, K.K.,
Mathad, C. and Thin, P.S., (2014). Study of
Antioxidant and Antimicrobial Properties,
Phytochemical screening and analysis of Sap
Extracted from Banana (Musa acuminata)
batang semu. International Journal of
Arena Tekstil Vol. 36 No. 2, 2021 : xx-xx
Advanced Biotechnology and Research, 5(4),
pp.649-658
Subagio, A., (2019). Biocomposite
characterization of bagasse starch derived from
cassava reinforced by acetylated bamboo
cellulose and plasticized by epoxidized waste
cooking oil. Rasayan journal of chemistry,
(3), pp.1470-1477.
Fahma, F., Sunarti, T.C., Indriyani, S.M. and
Lisdayana, N., (2017). Thermoplastic cassava
starch-PVA composite films with cellulose
nanofibers from oil palm empty fruit bunches
as reinforcement agent. International Journal of
Polymer Science.
Teixeira, E.D.M., Curvelo, A.A., Corrêa, A.C.,
Marconcini, J.M., Glenn, G.M. and Mattoso,
L.H., (2012). Properties of thermoplastic starch
from cassava bagasse and cassava starch and
their blends with poly (lactic acid). Industrial
Crops and Products, 37(1), pp.61-68.
Prachayawarakorn, J. and Pomdage, W.,
(2014). Effect of carrageenan on properties of
biodegradable thermoplastic cassava
starch/low-density polyethylene composites
reinforced by cotton fibers. Materials &
Design, 61, pp.264-269.
Prachayawarakorn, J., Chaiwatyothin, S.,
Mueangta, S. and Hanchana, A., (2013). Effect
of jute and kapok fibers on properties of
thermoplastic cassava starch composites.
Materials & Design, 47, pp.309-315.
Zainuddin, S.Y.Z., Ahmad, I. and Kargarzadeh,
H., (2013). Cassava starch biocomposites
reinforced with cellulose nanocrystals from
kenaf fibers. Composite Interfaces, 20(3),
pp.189-199.
Mohanty, A.K., Tummala, P., Liu, W., Misra,
M., Mulukutla, P.V. and Drzal, L.T., (2005).
Injection molded biocomposites from soy
protein based bioplastic and short industrial
hemp fiber. Journal of Polymers and the
Environment, 13(3), pp.279-285.
Weerapoprasit, C. and Prachayawarakorn, J.,
(2016). Properties of biodegradable
thermoplastic cassava starch/sodium alginate
composites prepared from injection molding.
Polymer Composites, 37(12), pp.3365-3372.
Chaitanya, S. and Singh, I., (2017). Processing
of PLA/sisal fiber biocomposites using directand extrusion-injection molding. Materials and
Manufacturing Processes, 32(5), pp.468-474.
Edhirej, A., Sapuan, S.M., Jawaid, M. and
Zahari, N.I., (2017). Cassava/sugar palm fiber
reinforced cassava starch hybrid composites:
Physical, thermal and structural properties.
International journal of biological
macromolecules, 101, pp.75-83.
Travalini, A.P., Lamsal, B., Magalhães, W.L.E.
and Demiate, I.M., (2019). Cassava starch films
reinforced with lignocellulose nanofibers from
pati. International journal of biological
macromolecules, 139, pp.1151-1161.
Amin, A.M.M., Sauid, S.M., Musa, M. and
Hamid, K.H.K., (2017). The effect of glycerol
content on mechanical properties, surface
morphology and water absorption of
thermoplastic films from tacca leontopetaloides
starch. Jurnal Teknologi, 79(5-3).
Jacob, M., Thomas, S. and Varughese, K.T.,
(2004). Mechanical properties of sisal/oil palm
hybrid fiber reinforced natural rubber
composites. Composites science and
Technology, 64(7-8), pp.955-965.
Ariska, R.E., (2015). Pengaruh konsentrasi
karagenan terhadap sifat fisik dan mekanik
edible film dari pati bonggol pisang dan
karagenan dengan plasticizer gliserol. Seminar
Nasional Kimia Jurusan Kimia FMIPA
Universitas Negeri Surabaya. Surabaya (pp. 3-
.
Khan, M.D.,Rahman, M., Ahmed, M.,Shuvo,
K., Ahmed, R., (2020). Optimization of
Residual Shrinkage Control of 100% Cotton
Woven Fabric Through Sanforization. Journal
Of Textile Science & Fashion Technology.
DOI: http://dx.doi.org/10.31266/at.v36i2.7217
Refbacks
- There are currently no refbacks.
Arena Tekstil indexed by:
Copyright Arena Tekstil (E-ISSN: 2548-7264, P-ISSN: 0518-4010)
Published by: BALAI BESAR TEKSTIL, Jl. Jenderal Ahmad Yani No. 390, Bandung.