STUDI PEMBUATAN BIOKOMPOSIT DARI LIMBAH TEPUNG Manihot esculenta cranzt DENGAN PENGUAT SERAT BATANG SEMU PISANG

Noerati Kemal, Maria Siahaan MS, Srie Gustiani, Kurniawan Kurniawan

Abstract


Biokomposit merupakan material komposit yang berasal dari polimer alami yang dapat terbiodegradasi, baik yang berfungsi sebagai matriks atau pengisi. Penelitian ini bertujuan untuk memanfaatkan limbah pati dan serat batang semu pisang sebagai bahan baku biokomposit. Pada penelitian ini matriks dibuat dari material biopolimer pati dari ampas singkong, yaitu limbah hasil pengolahan akar tanaman Manihot esculenta crantz dan penguat dari serat batang semu tanaman pisang. Pati dapat diolah menjadi material termoplastik untuk digunakan sebagai bahan bioplastik. Sebagai penguat, digunakan selulosa alami yang diisolasi dari limbah batang semu pisang menggunakan metode solution casting dengan menggunakan variasi gliserol sebagai plasticizer sebesar (10%, 20%, 30%, 40%, dan 50%). Biokomposit dibuat dengan menggunakan metode solution casting polymer menggunakan variasi komposisi serat dan film dengan perbandingan (30:70, 40:60, dan 50:50). Karakterisasi dilakukan terhadap sifat mekanikal dan hidrofilisitasnya. Hasil pengujian menunjukkan pati dapat dijadikan film dengan konsentrasi optimum gliserol sebesar 40% dengan nilai kekuatan tarik sebesar 0,71 MPa dan mulur sebesar 101,04%, dan kemampuan menyerap air sebesar 144,68%. Hasil pengujian terhadap biokomposit menunjukkan bahwa penambahan serat batang semu pisang pada pati dengan perbandingan serat dan film optimum sebesar 50:50 dapat meningkatkan kekuatan tarik dan daya serap dari nilai kekuatan tarik 0,71 MPa menjadi 4,62 MPa dan daya serap dari 144,68 menjadi 243,21%.

Keywords


Pati, Serat Batang Semu Pisang, Biokomposit

Full Text:

PDF

References


Mohanty, A.K., Misra, M. and Drzal, L.T.

(2002). Sustainable bio-composites from

renewable resources: opportunities and

challenges in the green materials world. Journal

of Polymers and the Environment, 10(1),

pp.19-26

Pandey, A., Soccol, C.R., Nigam, P., Soccol,

V.T., Vandenberghe, L.P. and Mohan, R.,

(2000). Biotechnological potential of agroindustrial residues. II: Pati. Bioresource

technology, 74(1), pp.81-87.

Pulungan, M.H., Hidayat, N., Wafa, A. and

Wardina, K., (2018). Pendayagunaan Pati

Singkong dan Tepung Kulit Singkong sebagai

Bahan Pembuatan Plastik Biodegradable

(Kajian Rasio Pati Singkong dan Tepung Kulit

Singkong). In Prosiding Seminar Nasional

Kulit, Karet dan Plastik (Vol. 7, No. 1).

Farias, F.O., Jasko, A.C., Colman, T.A.D.,

Pinheiro, L.A., Schnitzler, E., Barana, A.C. and

Demiate, I.M. (2014). Characterisation of Pati

and composites prepared by blending with lowdensity polyethylene. Brazilian Archives of

Biology and Technology, 57(6), pp.821-830

Kampeerapappun, P., Aht-ong, D., Pentrakoon,

D. and Srikulkit, K. (2007). Preparation of

cassava starch/montmorillonite composite film.

Carbohydrate Polymers, 67(2), pp.155-163

Detduangchan, N., Sridach, W. and Wittaya,

T., (2014). Enhancement of the properties of

biodegradable rice starch films by using

chemical crosslinking agents. International

Food Research Journal, 21(3).

Martin, O. and Avérous, L (2001). Poly (lactic

acid): plasticization and properties of

biodegradable multiphase systems. Polymer,

(14), pp.6209-6219

Bénézet, J.C., Stanojlovic-Davidovic, A.,

Bergeret, A., Ferry, L. and Crespy, A., (2012).

Mechanical and physical properties of

expanded starch, reinforced by natural fibres.

Industrial Crops and Products, 37(1), pp.435-

Subagyo, A. and Chafidz, A. (2018). Banana

pseudo-stem fiber: Preparation, characteristics,

and applications. Banana nutrition-function and

processing kinetics, pp.1-19.

Kumar, P.R., Srivastava, S., Singh, K.K.,

Mathad, C. and Thin, P.S., (2014). Study of

Antioxidant and Antimicrobial Properties,

Phytochemical screening and analysis of Sap

Extracted from Banana (Musa acuminata)

batang semu. International Journal of

Arena Tekstil Vol. 36 No. 2, 2021 : xx-xx

Advanced Biotechnology and Research, 5(4),

pp.649-658

Subagio, A., (2019). Biocomposite

characterization of bagasse starch derived from

cassava reinforced by acetylated bamboo

cellulose and plasticized by epoxidized waste

cooking oil. Rasayan journal of chemistry,

(3), pp.1470-1477.

Fahma, F., Sunarti, T.C., Indriyani, S.M. and

Lisdayana, N., (2017). Thermoplastic cassava

starch-PVA composite films with cellulose

nanofibers from oil palm empty fruit bunches

as reinforcement agent. International Journal of

Polymer Science.

Teixeira, E.D.M., Curvelo, A.A., Corrêa, A.C.,

Marconcini, J.M., Glenn, G.M. and Mattoso,

L.H., (2012). Properties of thermoplastic starch

from cassava bagasse and cassava starch and

their blends with poly (lactic acid). Industrial

Crops and Products, 37(1), pp.61-68.

Prachayawarakorn, J. and Pomdage, W.,

(2014). Effect of carrageenan on properties of

biodegradable thermoplastic cassava

starch/low-density polyethylene composites

reinforced by cotton fibers. Materials &

Design, 61, pp.264-269.

Prachayawarakorn, J., Chaiwatyothin, S.,

Mueangta, S. and Hanchana, A., (2013). Effect

of jute and kapok fibers on properties of

thermoplastic cassava starch composites.

Materials & Design, 47, pp.309-315.

Zainuddin, S.Y.Z., Ahmad, I. and Kargarzadeh,

H., (2013). Cassava starch biocomposites

reinforced with cellulose nanocrystals from

kenaf fibers. Composite Interfaces, 20(3),

pp.189-199.

Mohanty, A.K., Tummala, P., Liu, W., Misra,

M., Mulukutla, P.V. and Drzal, L.T., (2005).

Injection molded biocomposites from soy

protein based bioplastic and short industrial

hemp fiber. Journal of Polymers and the

Environment, 13(3), pp.279-285.

Weerapoprasit, C. and Prachayawarakorn, J.,

(2016). Properties of biodegradable

thermoplastic cassava starch/sodium alginate

composites prepared from injection molding.

Polymer Composites, 37(12), pp.3365-3372.

Chaitanya, S. and Singh, I., (2017). Processing

of PLA/sisal fiber biocomposites using directand extrusion-injection molding. Materials and

Manufacturing Processes, 32(5), pp.468-474.

Edhirej, A., Sapuan, S.M., Jawaid, M. and

Zahari, N.I., (2017). Cassava/sugar palm fiber

reinforced cassava starch hybrid composites:

Physical, thermal and structural properties.

International journal of biological

macromolecules, 101, pp.75-83.

Travalini, A.P., Lamsal, B., Magalhães, W.L.E.

and Demiate, I.M., (2019). Cassava starch films

reinforced with lignocellulose nanofibers from

pati. International journal of biological

macromolecules, 139, pp.1151-1161.

Amin, A.M.M., Sauid, S.M., Musa, M. and

Hamid, K.H.K., (2017). The effect of glycerol

content on mechanical properties, surface

morphology and water absorption of

thermoplastic films from tacca leontopetaloides

starch. Jurnal Teknologi, 79(5-3).

Jacob, M., Thomas, S. and Varughese, K.T.,

(2004). Mechanical properties of sisal/oil palm

hybrid fiber reinforced natural rubber

composites. Composites science and

Technology, 64(7-8), pp.955-965.

Ariska, R.E., (2015). Pengaruh konsentrasi

karagenan terhadap sifat fisik dan mekanik

edible film dari pati bonggol pisang dan

karagenan dengan plasticizer gliserol. Seminar

Nasional Kimia Jurusan Kimia FMIPA

Universitas Negeri Surabaya. Surabaya (pp. 3-

.

Khan, M.D.,Rahman, M., Ahmed, M.,Shuvo,

K., Ahmed, R., (2020). Optimization of

Residual Shrinkage Control of 100% Cotton

Woven Fabric Through Sanforization. Journal

Of Textile Science & Fashion Technology.




DOI: http://dx.doi.org/10.31266/at.v36i2.7217

Refbacks

  • There are currently no refbacks.


Arena Tekstil indexed by:

Science and Technology Index  Dimensions

 Garba Rujukan Digital (GARUDA)


Copyright Arena Tekstil (E-ISSN: 2548-7264, P-ISSN: 0518-4010)

Published by: BALAI BESAR TEKSTIL, Jl. Jenderal Ahmad Yani No. 390, Bandung.

Creative Commons License