PENGOLAHAN LIMBAH CAIR TEKSTIL DENGAN PROSES OKSIDASI MENGGUNAKAN OZON GELEMBUNG MIKRO

Nur Athikoh, Gunawan Gunawan, Muhammad Nur

Abstract


Proses pengolahan limbah cair industri tekstil dengan pewarna indigo dapat dilakukan dengan proses oksidasi oleh ozon gelembung mikro. Dalam penelitian ini, limbah yang digunakan merupakan limbah cair industri tekstil yang telah mengalami pengolahan limbah dengan proses koagulasi kimia. Proses tersebut kemudian dilanjutkan dengan pengolahan limbah menggunakan ozon gelembung mikro untuk meningkatkan proses oksidasi guna mendegradasi pewarna indigo pada limbah cair tekstil tersebut. Pengolahan limbah cair tekstil dengan pewarna indigo dilakukan dengan proses oksidasi menggunakan ozon gelembung mikro yang berukuran 61 – 80 µm.  Generator ozon gelembung mikro dibangkitkan dengan menyisipkan ozon pada aliran sirkulasi 20 liter limbah cair tekstil melalui pipa venturi dengan diameter 6,35 mm sebanyak 4 buah. Ozon dibangkitkan melalui reaktor lucutan berpenghalang dielektrik dengan nilai kapasitas ozon yang dapat divariasikan. Penelitian ini menggunakan nilai kapasitas ozon sebesar 50,4 g/jam, 67,7 g/jam, dan 86,4 g/jam. Setiap nilai kapasitas ozon yang digunakan untuk pengolahan limbah cair tekstil divariasikan dengan waktu pengolahan limbah selama 60, 120, 180, dan 540 menit. Hasil pengolahan limbah cair tekstil dengan proses oksidasi menggunakan ozon gelembung mikro menunjukkan bahwa pewarna indigo dalam limbah cair tekstil mampu tereduksi optimum menggunakan nilai kapasitas ozon sebesar 86,4 g/jam dan waktu pengolahan limbah selama 540 menit. Hal tersebut menunjukkan bahwa semakin lama waktu pengolahan limbah dan besar nilai kapasitas ozon yang digunakan maka proses degradasi pewarna indigo semakin tinggi.


Keywords


ozon gelembung mikro, kapasitas ozon, limbah cair tekstil, polutan

Full Text:

PDF

References


Perkowski, J., Kos, L., & Ledakowicz, S. Application of ozone in textile wastewater treatment. Ozone: Science and Engineering, 18(1), 73–85. (1996).

Malik, A., Akhtar, R., & Grohmann, E. Environmental deterioration and human health: Natural and anthropogenic determinants. Environmental Deterioration and Human Health: Natural and Anthropogenic Determinants, 1–421. (2014).

Ameta, S. C., Ameta, R. Introduction AOP for Wastewater Treatment Advanced dalam Oxidation Processes for Wastewater Treatment 1st edition Emerging Green Chemical Technology (hlm. 1–12). Rajasthan: Elsivier. (2018).

Mukimin, A., Vistanty, H., & Zen, N. Oxidation of textile wastewater using cylinder Ti/β-PbO2 electrode in electrocatalytic tube reactor. Chemical Engineering Journal, Vol. 259, pp. 430–437. (2015).

Tetteh, E.K., Rathilal, S. Application of Organic Coagulants in Water and Wastewater Treatment. Intech Open: Organic Polymer. (2019).

Xia, Z., Hu, L. Treatment of Organics Contaminated Wastewater by Ozone Micro-Nano-Bubbles. Water, 11, 55. (2019).

Khuntia, S., Majumder, S. K. dan Ghosh, P. Removal of Ammonia from Water by Ozone Microbubbles. Industrial & Engineering Chemistry Research, 52: 318–326. (2013).

Xiong, X., Wang, B., Zhu, W., Tian, K., dan Zhang, H. A Review on Ultrasonic Catalytic Microbubbles Ozonation Processes: Properties, Hydroxyl Radicals Generation Pathway and Potential in Application. Catalysts, 9, 10. (2019).

Ikeura, H., Kobayashi, F. dan Tamaki, M. Removal of Residual Pesticides in Vegetables using Ozone Microbubbles. Journal of Hazardous Materials, 186(1): 956–959. (2011).

Miklos, D. B., Remy, C., Jekel, M., Linden, K. G. dan Drewes, J. E. Evaluation of Advanced Oxidation Processes for Water and Wastewater Treatment: A critical review. Water Research, 139: 118–131. (2018).

Wei, C., Zhang, F., Hu, Y., Feng, C., dan Wu, H. Ozonation in water treatment: the generation, basic properties of ozone and its practical application. Rev Chemistry Engineering. (2016).

Nur, M., Susan, A. I., Muhlisin, Z., Arianto, F., Kinandana, A. W., Nurhasanah, I., Sumariyah, S., Wibawa, P. J., Gunawan, G. dan Usman, A. Evaluation of Novel Integrated Dielectric Barrier Discharge Plasma as Ozone Generator. Bulletin of Chemical Reaction Engineering & Catalysis, 12(1): 24–31. (2017).

Athikoh, N., Yulianto, E., Kinandana, A.W., Sasmita, E., Sanjani, A.H., Mustika, R.W., Pratama, A.P., Amalia, N.F., Gunawan, G., Nur, M. Reduction of Methylene Blue by Using Direct Continuous Ozone. Journal of Environment and Earth Science, 10:4. (2020).

Tekile, A., Kim, I., Lee, J. Y. Applications of Ozone Micro and Nanobubble Technologies in Water and Wastewater Treatment: Review. Journal of the Korean Society of Water and Wastewater, 31(6): 481–490. (2017).

Temesgen, T., Bui, T. T., Han, M., Kim, T. dan Park, H. Micro and Nanobubble Technologies as A New Horizon for Water-Treatment Techniques: A review. Advances in Colloid and Interface Science, 246: 40–51. (2017).

Li, P. Development of Advanced Water Treatment Technology Using Microbubbles. PhD Dissertation Keiro University. Japan. (2006).

Moertinah, S., Djarwanti S., Rieke Y., Rustiana Y. Peningkatan Kinerja Lumpur Aktif dengan Penambahan Karbon Aktif dalam Pengolahan Air Limbah Industri Tekstil Pewarnaan dengan Zat Warna Indigo & Sulfur. Jurnal Riset Industri, IV, 1:23. (2010).

Yulianto, E., Restiwijaya, M., Sasmita, E., Arianto, F., Kinandana, A. W. & Nur, M., “Power Analysis of Ozone Generator for High Capacity Production”, Journal of Physics: Conference Series,1170. (2019)

Chasanah, U,. Yulianto, E., Zain, A. Z., Sasmita, E., Restiwijaya, M., Kinandana, A. W., Arianto, F. & Nur, M.. “Evaluation of Titration Method on Determination of Ozone Concentration Produced by Dielectric Barrier Discharge Plasma (DBDP) Technology”, Journal of Physics: Conference Series, 1153. (2019).

Nur, Muhammad., Amelia, A.Y., Arianto, F., Kinandana, W.A., Zahar, I., Susan, I.K., Wibawa. J.P. Dielectric Barrier Discharge PLASMA Analysis anda Application for Processing Palm Oil Mill Effluent (POME). Procedia Engineering 170, pp 325-331. (2017).

Maeda, Y.; Hosokawa, S.; Baba, Y.; Tomiyama, A.; Ito, Y. Generation mechanism of micro-bubbles in a pressurized dissolution method. Exp. Therm. Fluid Sci., 60, 201–207. (2015).

Muroyama, K.; Imai, K.; Oka, Y.; Hayashi, J. Mass transfer properties in a bubble column associated with micro-bubble dispersions. Chem. Eng. Sci., 100, 464–473. (2013)

Miklos, D. B., Remy, C., Jekel, M., Linden, K. G. dan Drewes, J. E. Evaluation of Advanced Oxidation Processes for Water and Wastewater Treatment: A critical review. Water Research, 139: 118–131. (2018).




DOI: http://dx.doi.org/10.31266/at.v36i2.6688

Refbacks

  • There are currently no refbacks.


Arena Tekstil indexed by:

Science and Technology Index  Dimensions

 Garba Rujukan Digital (GARUDA)


Copyright Arena Tekstil (E-ISSN: 2548-7264, P-ISSN: 0518-4010)

Published by: BALAI BESAR TEKSTIL, Jl. Jenderal Ahmad Yani No. 390, Bandung.

Creative Commons License