PREPARASI DAN KARAKTERISASI MEMBRAN SERAT NANO POLIVINIL ALKOHOL/GELATIN DENGAN ANTIBIOTIKA TOPIKAL MENGGUNAKAN METODE ELECTROSPINNING

Theresia Mutia, Eva Novarini, Rr. Srie Gustiani

Abstract


Pada penelitian ini dilakukan proses electrospinning membran serat nano dari polivinil alkohol (PVA) dan gelatin dengan penambahan antibiotika topikal (Bacitracin dan Neomycin). Membran serat nano ini berpotensi untuk dijadikan sebagai produk pembalut luka atau media penghantar obat. Membran serat nano paling optimum diperoleh pada konsentrasi larutan PVA 10% (w/w) dan gelatin 5% (w/w) dengan rasio komposisi berat 70/30. Kondisi ini menghasilkan serat nano dengan ukuran ≤300 nm dan keseragaman serat yang cukup baik berdasarkan analisis morfologi menggunakan SEM. Penambahan antibiotika topikal dilakukan pada kondisi pembuatan membran serat nano paling optimum. Berdasarkan hasil analisis gugus fungsi menggunakan FTIR, pada grafik terlihat gabungan antara spektra PVA, gelatin, dan antibiotika topikal. Hal ini menandakan adanya interaksi antara molekul PVA, gelatin, dengan antibiotika topikal.


Keywords


elektrospining, serat nano, PVA, gelatin, antibiotika topikal

Full Text:

PDF

References


Formhals, A. (1934). Apparatus for producing artificial filaments from materials such as cellulose acetate. U.S. Patent 1975504.

Pillay, V., Dott, C., Choonara, E. Y., Tyagi, C., Tomar, L., Kumar, P., du Toit, L. C., Ndesendo, V. M. K. (2013). A Review of the Effect of Processing Variables on the Fabrication of Electrospun Nanofibers for Drug Delivery Applications. Journal of Nanomaterials. Volume 2013, Hindawi Publishing Corporation, 22 pages http://dx.doi.org/10.1155/2013/789289

Santos, C., Silva, C. J., Büttel, Z., Guimarães, R., Pereira, S. B., Tamagnini, P., & Zille, A. (2014). Preparation and characterization of polysaccharides/PVA blend nanofibrous membranes by electrospinning method. Carbohydrate Polymers, 99, 584–592. doi:10.1016/j.carbpol.2013.09.008

Liu, Y., Wang, R., Ma, H., Hsiao, B. S., & Chu, B. (2013). High-flux microfiltration filters based on electrospun polyvinylalcohol nanofibrous membranes. Polymer, 54(2), 548–56. doi:10.1016/j.polymer.2012.11.064

Loh, X. J., Peh, P., Liao, S., Sng, C., & Li, J. (2010). Controlled drug release from biodegradable thermoresponsive physical hydrogel nanofibers. Journal of Controlled Release, 143(2), 175–182. doi:10.1016/j.jconrel.2009.12.030

Bhardwaj, N., & Kundu, S. C. (2010). Electrospinning: A fascinating fiber fabrication technique. Biotechnology Advances, 28(3), 325–347. doi:10.1016/j.biotechadv.2010.01.004

Laha, A., Sharma, C. S., & Majumdar, S. (2016). Electrospun gelatin nanofibers as drug carrier: effect of crosslinking on sustained release. Materials Today: Proceedings, 3(10), 3484–3491. doi:10.1016/j.matpr.2016.10.031

Gautam, S., Dinda, A. K., & Mishra, N. C. (2013). Fabrication and characterization of PCL/gelatin composite nanofibrous scaffold for tissue engineering applications by electrospinning method. Materials Science and Engineering: C, 33(3), 1228–1235. doi:10.1016/j.msec.2012.12.015

Li, D., Chen, W., Sun, B., Li, H., Wu, T., Ke, Q., Mo, X. (2016). A comparison of nanoscale and multiscale PCL/gelatin scaffolds prepared by disc-electrospinning. Colloids and Surfaces B: Biointerfaces, 146, 632-641. doi:10.1016/j.colsurfb.2016.07.009

Correia, T. R., Ferreira, P., Vaz, R., Alves, P., Figueiredo, M. M., Correia, I. J., & Coimbra, P. (2016). Development of UV cross-linked gelatin coated electrospun poly(caprolactone) fibrous scaffolds for tissue engineering. International Journal of Biological Macromolecules, 93, 1539–1548. doi:10.1016/j.ijbiomac.2016.05.045

Xue, J., He, M., Liu, H., Niu, Y., Crawford, A., Coates, P. D., Zhang, L. (2014). Drug loaded homogeneous electrospun PCL/gelatin hybrid nanofiber structures for anti-infective tissue regeneration membranes. Biomaterials, 35(34), 9395–9405. doi:10.1016/j.biomaterials.2014.07.060

Yang, D., Li, Y., & Nie, J. (2007). Preparation of gelatin/PVA nanofibers and their potential application in controlled release of drugs. Carbohydrate Polymers, 69(3), 538 543. doi:10.1016/j.carbpol.2007.01.008

Laha, A., Yadav, S., Majumdar, S., & Sharma, C. S. (2016). In-vitro release study of hydrophobic drug using electrospun cross-linked gelatin nanofibers. Biochemical Engineering Journal, 105, 481–488. doi:10.1016/j.bej.2015.11.001

Merkle, V. M., Tran, P. L., Hutchinson, M., Ammann, K. R., DeCook, K., Wu, X., & Slepian, M. J. (2015). Core–shell PVA/gelatin electrospun nanofibers promote human umbilical vein endothelial cell and smooth muscle cell proliferation and migration. Acta Biomaterialia, 27, 77–87. doi:10.1016/j.actbio.2015.08.044

Morsy, R., Hosny, M., Reicha, F., & Elnimr, T. (2017). Developing and physicochemical evaluation of cross-linked electrospun gelatin–glycerol nanofibrous membranes for medical applications. Journal of Molecular Structure, 1135, 222–227. doi:10.1016/j.molstruc.2017.01.064

Rath, G., Hussain, T., Chauhan, G., Garg, T., & Goyal, A. K. (2016). Development and characterization of cefazolin loaded zinc oxide nanoparticles composite gelatin nanofiber mats for postoperative surgical wounds. Materials Science and Engineering: C, 58, 242–253. doi:10.1016/j.msec.2015.08.050

Sanaei-rad, P., Jafarzadeh Kashi, T., Seyedjafari, E., & Soleimani, M. (2016). Enhancement of stem cell differentiation to osteogenic lineage on hydroxyapatite-coated hybrid PLGA/gelatin nanofiber scaffolds. Biologicals, 44(6), 511–516. doi:10.1016/j.biologicals.2016.09.002

Meng, Z. X., Wang, Y. S., Ma, C., Zheng, W., Li, L., & Zheng, Y. F. (2010). Electrospinning of PLGA/gelatin randomly-oriented and aligned nanofibers as potential scaffold in tissue engineering. Materials Science and Engineering: C, 30(8), 1204–1210. doi:10.1016/j.msec.2010.06.018

Meng, Z. X., Xu, X. X., Zheng, W., Zhou, H. M., Li, L., Zheng, Y. F., & Lou, X. (2011). Preparation and characterization of electrospun PLGA/gelatin nanofibers as a potential drug delivery system. Colloids and Surfaces B: Biointerfaces, 84(1), 97–102. doi:10.1016/j.colsurfb.2010.12.022

Ratanavaraporn, J., Rangkupan, R., Jeeratawatchai, H., Kanokpanont, S., & Damrongsakkul, S. (2010). Influences of physical and chemical crosslinking techniques on electrospun type A and B gelatin fiber mats. International Journal of Biological Macromolecules, 47(4), 431–438. doi:10.1016/j.ijbiomac.2010.06.008

Okutan, N., Terzi, P., & Altay, F. (2014). Affecting parameters on electrospinning process and characterization of electrospun gelatin nanofibers. Food Hydrocolloids, 39, 19–26. doi:10.1016/j.foodhyd.2013.12.022

Mutia, T., Eriningsih, R., (2012). Penggunaan Webs Serat Alginat Hasil Proses Electrospinning Untuk Pembalut Luka Primer, Jurnal Riset Industri, Jakarta, Vol. VI, No. 2.

Mutia, T., Eriningsih, R., Safitri, R., (2013). Serat Nano Gelatin/Polivinil Alkohol Untuk Keperluan Tekstil Medis, Jurnal Riset Industri, Jakarta, Vol. VII, No. 3.

Mutia, T., dan Moeliono, M., (2014). Webs Serat Nano Alginat/Polivinil Alkohol Untuk Media Penyampaian Obat Topikal, Jurnal Riset Industri, Volume 8, No. 3, Desember.

Schiffman, J. D., & Schauer, C. L. (2008). A review: Electrospinning of biopolymer nanofibers and their applications. Polymer Reviews, 48(2), 317–352.

Bonino, C. A., Krebs, M. D., Saquing, C. D., Jeong, S. I., Shearer, K. L., Alsberg, E., et al. (2011). Electrospinning alginate-based nanofibers: From blends to crosslinked low molecular weight alginate-only systems. Carbohydrate Polymers, 85(1), 111–119.

Fan, L., Yang, H., Yang, J., Peng, M., & Hu, J. (2016). Preparation and characterization of chitosan/gelatin/PVA hydrogel for wound dressings. Carbohydrate Polymers, 146, 427–434. doi:10.1016/j.carbpol.2016.03.002

Choi, Y. H., Seung, S. C., Simkhada, J. R., Rahman, Md, S., Yoon, S. C., Chun, S. K., Jin, C. Y., (2017). A Novel Multifunctional Peptide Oligomer of Bacitracin with Possible Bioindustrial and Therapeutic Applications from a Korean Food-Source Bacillus Strain, PLoS One, https://doi.org/10.1371/journal.pone.0176971

Chang, J., June, C., Yoon, C. R., Myung, H. Y., Kyoung, H. O., Gi, J. I., Seung, H. L., Soon, Y. K., Park, H., Sung, W. C., Jung, H. K., (2016). Sodium Selenite Acts as an Otoprotectant against Neomycin-Induced Hair Cell Damage in a Zebrafish Model, PLoS One, Published: March 14, https://doi.org/10.1371/journal.pone.0151557

Anonimous, (2008). Informasi Spesialite Obat Indonesia, Ikatan Sarjana Farmasi Indonesia.

Panboon, MSS, (2000). Electro-spinning of Polyvinyl Alcohol/Chitosan Fibers for Wound Dressing Application, King Mongkut’s Institute of Technology North Bangkong.

Peter PT, et. all., (2004). Investigation of Fiber, Bulk and Surface Properties of Meltblown and Electrospun Polymeric Fabrics, Textile and nonwoven Development Center, INJ Fall.

Edward, JV, et.al., (2006). The Future of Modified Fibers, Southern Regional Research Center, New Orleans.

Brown, PJ, et.al., (2007). Nanofibers and Nanotechnology in Textiles, The Textile Institute, Woodhead Pub. Ltd., Cambridge.

Mutia, T., Safitri, R., Eriningsih, R., (2011). Membran Alginat Sebagai Pembalut Luka Primer dan Media Penyampaian Obat Topikal Untuk Luka Terinfeksi, Jurnal Riset Industri, Jakarta, Vol. V, No. 2.

Nuanchan, C, et.al., (2007). Electrospun Gelatin Fibers: Effect of Solvent System on Morphology and Fibers Diameters, Polymer J., Vo. 39., No. 6., pp 622-631.

Silverstein, RM, et. al., (1975). Spectrometric Identification of Organic Compound, Third Edition, John Willey & Sons, New York.




DOI: http://dx.doi.org/10.31266/at.v35i2.5867

Refbacks

  • There are currently no refbacks.


Arena Tekstil indexed by:

Science and Technology Index  Dimensions

 Garba Rujukan Digital (GARUDA)


Copyright Arena Tekstil (E-ISSN: 2548-7264, P-ISSN: 0518-4010)

Published by: BALAI BESAR TEKSTIL, Jl. Jenderal Ahmad Yani No. 390, Bandung.

Creative Commons License