Mohamad Widodo, Sophie Anggitta Raharjani


Antimicrobial agents have been the subject of scientific interest for the last few decades. However, the emergence of a novel coronavirus and pandemic that ensued has brought a new sense of urgency to the field of antibacterial research. The most urgent needs to mitigate the pandemic are self-disinfecting health equipment and antimicrobial protective equipment such as gowns for healthcare workers and face masks for the general public. At a time of high demand for antimicrobial products, understanding the mechanisms involved in antimicrobial polymers will be a benefit. In this review, the definition of antimicrobials and their classification according to the mode of action, as well as their chemical structure, were explained and used to build the fundamental understanding about antimicrobials and the working principles behind their action. The discussion continued with factors that affect the antimicrobial activity, which is the focus of the review.  The first part of the review deals with free antimicrobial polymers in solution. The effect of molecular weight, counterions, spacer length and alkyl chain to the efficacy of antimicrobial polymers are highlighted and discussed at length. Focus in the second part shifts towards surface-immobilized antimicrobial polymers and their methods of immobilization.


polymeric antimicrobial; antimicrobial structure; surface immobilization

Full Text:



Kenawy, E.-R., Worley, S. D. & Broughton, R. The Chemistry and Applications of Antimicrobial Polymers: A State-of-the-Art Review. Biomacromolecules 8, 1359–1384 (2007).

Appendini, P. & Hotchkiss, J. H. Surface modification of poly(styrene) by the attachment of an antimicrobial peptide. J. Appl. Polym. Sci. 81, 609–616 (2001).

Batich, C. D., Mast, B. A., Olderman, G. M., Schultz, G. & Lerner, D. S. Intrinsically bactericidal absorbent dressing and method of fabrication.

Schierholz, J. M. & Beuth, J. Implant infections: a haven for opportunistic bacteria. J. Hosp. Infect. 49, 87–93 (2001).

Comstock, K., Farrell, D., Godwin, C. & Xi, Y. From Hydrocarbons to Carbohydrates: Food Packaging of the Future.

Suppakul, P., Miltz, J., Sonneveld, K. & Bigger, S. W. Active Packaging Technologies with an Emphasis on Antimicrobial Packaging and its Applications. J. Food Sci. 68, 408–420 (2003).

Persico, P. et al. Nanocomposite polymer films containing carvacrol for antimicrobial active packaging. Polym. Eng. Sci. 49, 1447–1455 (2009).

Bauer, T. M., Ofner, E., Just, H. M., Just, H. & Daschner, F. D. An epidemiological study assessing the relative importance of airborne and direct contact transmission of microorganisms in a medical intensive care unit. J. Hosp. Infect. 15, 301–309 (1990).

WHO Timeline - COVID-19. Available at: Accessed on 21 June 2020. (Accessed: 24th June 2020)

Modes of transmission of virus causing COVID-19: implications for IPC precaution recommendations. Available at: (Accessed: 24th June 2020)

Ng, K. et al. COVID-19 and the Risk to Health Care Workers: A Case Report. Ann. Intern. Med. 172, 766–767 (2020).

Feng, S. et al. Rational use of face masks in the COVID-19 pandemic. The Lancet Respiratory Medicine 8, 434–436 (2020).

Lai, M. Y. Y., Cheng, P. K. C. & Lim, W. W. L. Survival of Severe Acute Respiratory Syndrome Coronavirus. Clin. Infect. Dis. 41, e67–e71 (2005).

Tashiro, T. Antibacterial and Bacterium Adsorbing Macromolecules. Macromol. Mater. Eng. 286, 63–87 (2001).

Muñoz-Bonilla, A. & Fernández-García, M. Polymeric materials with antimicrobial activity. Progress in Polymer Science (Oxford) 37, 281–339 (2012).

Siedenbiedel, F. & Tiller, J. C. Antimicrobial Polymers in Solution and on Surfaces: Overview and Functional Principles. Polymers (Basel). 4, 46–71 (2012).

Santos, M. R. E. et al. Recent developments in antimicrobial polymers: A review. Materials 9, 599 (2016).

Tiller, J. C., Liao, C.-J., Lewis, K. & Klibanov, A. M. Designing surfaces that kill bacteria on contact. Proc. Natl. Acad. Sci. U. S. A. 98, 5981–5985 (2001).

Kugler, R., Bouloussa, O. & Rondelez, F. Evidence of a charge-density threshold for optimum efficiency of biocidal cationic surfaces. Microbiology 151, 1341–1348 (2005).

Lee, S. B. et al. Permanent, Nonleaching Antibacterial Surfaces. 1. Synthesis by Atom Transfer Radical Polymerization. Biomacromolecules 5, 877–882 (2004).

Thome, J., Holländer, A., Jaeger, W., Trick, I. & Oehr, C. Ultrathin antibacterial polyammonium coatings on polymer surfaces. Surf. Coatings Technol. 174–175, 584–587

Thome, J., Holländer, A., Jaeger, W., Hahn, M. & Trick, I. Antimikrobiell modifiziertes Substrat, Verfahren zu dessen Herstellung sowie dessen Verwendung.

Cen, L., Neoh, K. G. & Kang, E. T. Surface Functionalization Technique for Conferring Antibacterial Properties to Polymeric and Cellulosic Surfaces. Langmuir 19, 10295–10303 (2003).

Lin, J., Qiu, S., Lewis, K. & Klibanov, A. M. Mechanism of bactericidal and fungicidal activities of textiles covalently modified with alkylated polyethylenimine. Biotechnol. Bioeng. 83, 168–172 (2003).

Lin, J., Murthy, S. K., Olsen, B. D., Gleason, K. K. & Klibanov, A. M. Making thin polymeric materials, including fabrics, microbicidal and also water-repellent. Biotechnol. Lett. 25, 1661–1665 (2003).

Lin, J., Qiu, S., Lewis, K. & Klibanov, A. M. Bactericidal Properties of Flat Surfaces and Nanoparticles Derivatized with Alkylated Polyethylenimines. Biotechnol. Prog. 18, 1082–1086 (2002).

Lin, J., Tiller, J. C., Lee, S. B., Lewis, K. & Klibanov, A. M. Insights into bactericidal action of surface-attached poly(vinyl-N-hexylpyridinium) chains. Biotechnol. Lett. 24, 801–805 (2002).

Tiller, J. C., Lee, S. B., Lewis, K. & Klibanov, A. M. Polymer surfaces derivatized with poly(vinyl-N-hexylpyridinium) kill airborne and waterborne bacteria. Biotechnol. Bioeng. 79, 465–471 (2002).

Ignatova, M. et al. Synthesis of Copolymer Brushes Endowed with Adhesion to Stainless Steel Surfaces and Antibacterial Properties by Controlled Nitroxide-Mediated Radical Polymerization. Langmuir 20, 10718–10726 (2004).

Isquith, A. J., Abbott, E. A. & Walters, P. A. Surface-Bonded Antimicrobial Activity of an Organosilicon Quaternary Ammonium Chloride. Appl. Environ. Microbiol. 24, 859–863 (1972).

Isquith, A. J. & McCollum, C. J. Surface kinetic test method for determining rate of kill by an antimicrobial solid. Appl. Environ. Microbiol. 36, 700–704 (1978).

Haldar, J., An, D., De Cienfuegos, L. Á., Chen, J. & Klibanov, A. M. Polymeric coatings that inactivate both influenza virus and pathogenic bacteria. Proc. Natl. Acad. Sci. U. S. A. 103, 17667–17671 (2006).

Hernández, A. et al. Two known therapies could be useful as adjuvant therapy in critical patients infected by COVID-19. Rev. Española Anestesiol. y Reanim. (English Ed. 67, 245–252 (2020).

Atwood, T. et al. Oxford Dictionary of Biochemistry and Molecular Biology. (Oxford University Press, USA, 2006).

Manivannan, G. Disinfection and Decontamination: Principles, Applications and Related Issues. (CRC Press, 2007).

Paulus, W. Directory of Microbicides for the Protection of Materials and Processes. (Springer, 2005).

Franklin, T. J. & Snow, G. A. Biochemistry and Molecular Biology of Antimicrobial Drug Action. (Springer, 2005).

Singleton, P. & Sainsbury, D. Dictionary of Microbiology & Molecular Biology. (Wiley, 2006).

Kennedy, J. F. & Tun, H. C. Active insolubilized antibiotics based on cellulose and cellulose carbonate. Antimicrob. Agents Chemother. 3, 575–579 (1973).

Buchenska, J. Polyamide fibers (PA6) with antibacterial properties. J. Appl. Polym. Sci. 61, 567–576 (1996).

Patel, H., Raval, D. A., Madamwar, D. & Patel, S. R. Polymeric prodrug: Synthesis, release study and antimicrobial property of poly(styrene-co-maleic anhydride)-bound acriflavine. Die Angew. Makromol. Chemie 263, 25–30 (1998).

Patel, J. S., Patel, S. V., Talpada, N. P. & Patel, H. A. Bioactive polymers: Synthesis, release study and antimicrobial properties of polymer bound Ampicillin. Die Angew. Makromol. Chemie 271, 24–27 (1999).

Moore, S. L. & Payne, D. N. Type of Antimicrobial Agents. in 8–97 (Wiley-Blackwell, 2004).

Chapman, J. S. Biocide resistance mechanisms. Int. Biodeterior. Biodegradation 51, 133–138 (2003).

Ren, X. et al. Antimicrobial efficacy and light stability of N-halamine siloxanes bound to cotton. Cellulose 15, 593–598 (2008).

Gottardi, W. & Nagl, M. Chlorine covers on living bacteria: the initial step in antimicrobial action of active chlorine compounds. J. Antimicrob. Chemother. 55, 475–482 (2005).

Kim, J., Pitts, B., Stewart, P. S., Camper, A. & Yoon, J. Comparison of the Antimicrobial Effects of Chlorine, Silver Ion, and Tobramycin on Biofilm. Antimicrob. Agents Chemother. 52, 1446–1453 (2008).

Dukan, S. & Touati, D. Hypochlorous acid stress in Escherichia coli: resistance, DNA damage, and comparison with hydrogen peroxide stress. J. Bacteriol. 178, 6145–6150 (1996).

Dukan, S., Belkin, S. & Touati, D. Reactive Oxygen Species Are Partially Involved in the Bacteriocidal Action of Hypochlorous Acid. Arch. Biochem. Biophys. 367, 311–316 (1999).

Liang, J. et al. Fabric Treated with Antimicrobial N-Halamine Epoxides. Ind. Eng. Chem. Res. 46, 6425–6429 (2007).

Rosas-Ledesma, P. et al. Antimicrobial efficacy in vivo of a new formulation of 2-butanone peroxide in n-propanol: comparison with commercial products in a cross-over trial. J. Hosp. Infect. 71, 223–227 (2009).

Wang, X. & Zhao, X. Contribution of Oxidative Damage to Antimicrobial Lethality. Antimicrob. Agents Chemother. 53, 1395–1402 (2009).

Napimoga, M. H., de Oliveira, R., Reis, A. F., Gonçalves, R. B. & Giannini, M. In vitro antimicrobial activity of peroxide-based bleaching agents. Quintessence Int. (Berlin, Ger. 1985) 38, e329-333 (2007).

Clapp, P. A., Davies, M. J., French, M. S. & Gilbert, B. C. The bactericidal action of peroxides; an EPR spin-trapping study. Free Radic. Res. 21, 147–167 (1994).

Sun, G. & Worley, S. Halamine Chemistry and its Applications in Biocidal Textiles and Polymers. in 81–89 (2006).

Schindler, W. D. & Hauser, P. J. Chemical Finishing of Textiles. (CRC, 2004).

Factors Influencing the Efficacy of Antimicrobial. in (ed. Russell, A. D.) 98–127 (Wiley-Blackwell, 2004).

Ikeda, T. & Tazuke, S. Biologically active polycations: Antimicrobial activities of Poly[trialkyl(vinylbenzyl)ammonium chloride]-type polycations. Die Makromol. Chemie, Rapid Commun. 4, 459–461 (1983).

Ikeda, T., Tazuke, S. & Suzuki, Y. Biologically active polycations, 4. Synthesis and antimicrobial activity of poly(trialkylvinylbenzylammonium chloride)s. Die Makromol. Chemie 185, 869–876 (1984).

Ikeda, T., Hirayama, H., Yamaguchi, H., Tazuke, S. & Watanabe, M. Polycationic biocides with pendant active groups: molecular weight dependence of antibacterial activity. Antimicrob. Agents Chemother. 30, 132–6 (1986).

Ikeda, T., Yamaguchi, H. & Tazuke, S. Molecular Weight Dependence of Antibacterial Activity in Cationic Disinfectants. J. Bioact. Compat. Polym. 5, 31–41 (1990).

Kanazawa, A., Ikeda, T. & Endo, T. Polymeric phosphonium salts as a novel class of cationic biocides. IV. Synthesis and antibacterial activity of polymers with phosphonium salts in the main chain. J. Polym. Sci. Part A Polym. Chem. 31, 3031–3038 (1993).

Kanazawa, A., Ikeda, T. & Endo, T. Polymeric phosphonium salts as a novel class of cationic biocides. II. Effects of counter anion and molecular weight on antibacterial activity of polymeric phosphonium salts. J. Polym. Sci. Part A Polym. Chem. 31, 1441–1447 (1993).

Zheng, L.-Y. & Zhu, J.-F. Study on antimicrobial activity of chitosan with different molecular weights. Carbohydr. Polym. 54, 527–530 (2003).

Gilbert, P. & Moore, L. E. Cationic antiseptics: diversity of action under a common epithet. J. Appl. Microbiol. 99, 703–715 (2005).

Panarin, E. F., Solovskii, M. V., Zaikina, N. A. & Afinogenov, G. E. Biological activity of cationic polyelectrolytes. Die Makromol. Chemie 9, 25–33 (1985).

Chen, C. Z. et al. Quaternary Ammonium Functionalized Poly(propylene imine) Dendrimers as Effective Antimicrobials: Structure−Activity Studies. Biomacromolecules 1, 473–480 (2000).

Russell, Hugo & Ayliffe's Principles and Practice of Disinfection, Preservation & Sterilization. (Wiley-Blackwell, 2004).

Eaton, P., Fernandes, J. C., Pereira, E., Pintado, M. E. & Xavier Malcata, F. Atomic force microscopy study of the antibacterial effects of chitosans on Escherichia coli and Staphylococcus aureus. Ultramicroscopy 108, 1128–1134 (2008).

Tomalia, D. A. et al. A New Class of Polymers: Starburst-Dendritic Macromolocelues. Polym. J. 17, 117–132 (1985).

Kleszczynska, H., Sarapuk, J. & Rozycka-Roszak, B. The Role of Counterions in the Interaction of Some Cationic Surfactants with Model Membranes. Polish J. Environ. Stud. 7, 327–329 (1998).

Mynacik, D., Devinsky, F. & Lacko, I. Influence of counterions on antimicrobial activity of quaternary ammonium salts. Eur. J. Pharm. Sci. 4, S191 (1996).

Kanazawa, A., Ikeda, T. & Endo, T. Polymeric phosphonium salts as a novel class of cationic biocides. IX. Effect of side-chain length between main chain and active group on antibacterial activity. J. Polym. Sci. Part A Polym. Chem. 32, 1997–2001 (1994).

Kanazawa, A., Ikeda, T. & Endo, T. A novel approach to mode of action of cationic biocides morphological effect on antibacterial activity. J. Appl. Microbiol. 78, 55–60 (1995).

Balgavý, P. & Devínsky, F. Cut-off effects in biological activities of surfactants. Adv. Colloid Interface Sci. 66, 23–63 (1996).

Nakagawa, Y. et al. Disinfection of Water with Quaternary Ammonium Salts Insolubilized on a Porous Glass Surface. Appl. Environ. Microbiol. 47, 513–518 (1984).

Nonaka, T., Hua, L., Ogata, T. & Kurihara, S. Synthesis of water-soluble thermosensitive polymers having phosphonium groups from methacryloyloxyethyl trialkyl phosphonium chlorides-N-isopropylacrylamide copolymers and their functions. J. Appl. Polym. Sci. 87, 386–393 (2003).

Kanazawa, A., Ikeda, T. & Endo, T. Polymeric phosphonium salts as a novel class of cationic biocides. VII. Synthesis and antibacterial activity of polymeric phosphonium salts and their model compounds containing long alkyl chains. J. Appl. Polym. Sci. 53, 1237–1244 (1994).

Lewis, K. & Klibanov, A. M. Surpassing nature: rational design of sterile-surface materials. Trends Biotechnol. 23, 343–348 (2005).

Haynie, S., Crum, G. & Doele, B. Antimicrobial activities of amphiphilic peptides covalently bonded to a water-insoluble resin. Antimicrob. Agents Chemother. 39, 301–307 (1995).

Bagheri, M., Beyermann, M. & Dathe, M. Immobilization Reduces the Activity of Surface-Bound Cationic Antimicrobial Peptides with No Influence upon the Activity Spectrum. Antimicrob. Agents Chemother. 53, 1132–1141 (2009).

Huang, J. et al. Nonleaching Antibacterial Glass Surfaces via "Grafting Onto": The Effect of the Number of Quaternary Ammonium Groups on Biocidal Activity. Langmuir 24, 6785–6795 (2008).

Walters, P. A., Abbott, E. A. & Isquith, A. J. Algicidal Activity of a Surface-Bonded Organosilicon Quaternary Ammonium Chloride. Appl. Environ. Microbiol. 25, 253–256 (1973).

Matias, V. R. F., Al-Amoudi, A., Dubochet, J. & Beveridge, T. J. Cryo-Transmission Electron Microscopy of Frozen-Hydrated Sections of Escherichia coli and Pseudomonas aeruginosa. J. Bacteriol. 185, 6112–6118 (2003).

Matias, V. R. F. & Beveridge, T. J. Cryo-electron microscopy reveals native polymeric cell wall structure in Bacillus subtilis 168 and the existence of a periplasmic space. Mol. Microbiol. 56, 240–251 (2005).

Kanazawa, A., Ikeda, T. & Endo, T. Polymeric phosphonium salts as a novel class of cationic biocides. III. Immobilization of phosphonium salts by surface photografting and antibacterial activity of the surface-treated polymer films. J. Polym. Sci. Part A Polym. Chem. 31, 1467–1472 (1993).

Murata, H., Koepsel, R. R., Matyjaszewski, K. & Russell, A. J. Permanent, non-leaching antibacterial surfaces--2: How high density cationic surfaces kill bacterial cells. Biomaterials 28, 4870–4879 (2007).

Ravikumar, T., Murata, H., Koepsel, R. R. & Russell, A. J. Surface-Active Antifungal Polyquaternary Amine. Biomacromolecules 7, 2762–2769 (2006).

Cheng, G., Xue, H., Zhang, Z., Chen, S. & Jiang, S. A Switchable Biocompatible Polymer Surface with Self-Sterilizing and Nonfouling Capabilities. Angew. Chemie Int. Ed. 47, 8831–8834 (2008).



  • There are currently no refbacks.

Arena Tekstil indexed by:

Science and Technology Index  Dimensions

 Garba Rujukan Digital (GARUDA)

Copyright Arena Tekstil (E-ISSN: 2548-7264, P-ISSN: 0518-4010)

Published by: BALAI BESAR TEKSTIL, Jl. Jenderal Ahmad Yani No. 390, Bandung.

       Creative Commons License