Sintesis Coco-Biodiesel Dari Minyak Kelapa Mentah (Crude Coconut Oil) Menggunakan Static Mixer

Dr. Ir. Rizal Alamsyah, M.Sc

Abstract


ABSTRAK: Pengolahan kelapa menjadi produk turunannya mutlak dilakukan karena akan meningkatkan nilai tambah kelapa sehingga pelaku industri kelapa akan lebih tertarik karena memperoleh margin keuntungan. Penelitian ini bertujuan untuk mengolah minyak kelapa mentah yang diperoleh hasil pengempaan kopra menjadi coco-biodiesel menggunakan reaktor static mixer. Pengolahan coco-biodiesel dilakukan dengan reaksi transesterifikasi dengan cara mereaksikan trigliserida (TG) dari minyak kelapa mentah dan metanol dengan variasi rasio molar 1 : 10,5, 1 : 5,5, dan 1 : 4. Proses dilakukan dalam skala pilot 16 liter pada suhu 65 oC dan kecepatan aliran 1,25 m/detik (pada static mixer) serta menggunakan metanol 98% dan katalis KOH 1 %. Kondisi optimum sintesis TG menjadi asam lemak metil ester (coco-biodiesel) untuk menghasilkan kandungan 96,5 % (persyaratan) diperoleh pada rasio molar 1 : 5,5. Bilangan asam, gliserol total, gliserol bebas, densitas, viskositas, dan bilangan Iod dari coco-biodiesel yang dihasilkan masing masing adalah < 0,5, 0,1%, 0,02%, 855 kg/m3, 3,6 cSt, 120 g Iod/100 g. Nilai-nilai tersebut memenuhi standar biodiesel SNI 04-7182-2006.

Kata Kunci: Minyak kelapa mentah, transesterifikasi, static mixer, coco-biodiesel, rasio molar

ABSTRACT: Processing coconut into derivative products is absolutely necessary because it will increase the added value of coconut so that the coconut industry players will be more interested in obtaining profit margins. This study aims to process crude coconut oil obtained by pressing copra into coco-biodiesel using a static mixer reactor. Processing of coco-biodiesel is done by transesterification reaction by reacting triglycerides (TG) from crude coconut oil and methanol with variations in the molar ratios of 1: 10.5, 1: 5.5, and 1: 4. The process is carried out on a pilot scale of 16 liters temperature of 65 oC and flow rate of 1.25 m / sec (in static mixer) and using 98% methanol and 1% KOH catalyst. The optimum condition of TG synthesis into fatty acid methyl esters (coco-biodiesel) to produce a 96.5% content (requirement) was obtained at a molar ratio of 1: 5.5. Acid numbers, total glycerol, free glycerol, density, viscosity, and Iodine number of coco-biodiesel produced were <0.5, 0.1%, 0.02%, 855 kg / m3, 3.6 cSt, respectively. 120 g Iod / 100 g. The values of these parameters meet the SNI 04-7182-2006 biodiesel standards.

Keywords: coconut crude oil, transesterification, static mixer, coco-biodiesel, molar ratio


Keywords


Minyak kelapa mentah ; Transesterifikasi ; static mixer ; coco-biodiesel

Full Text:

PDF

References


Alamsyah, R., Siregar, N.C., Loebis E.H., & Susanti I. (2013). Secure and Utilization Technology for Indonesian Biomass Aimed to Cope with RPS (Renewable Portfolio Standard), Joint research report BBIA – Kitech, South Korea, BBIA.

Alamsyah, R., Tambunan, A.H., Purwanto, A.Y., & Kusdiana D. (2010). Comparison of Static-Mixer and Blade agitator Reactor in Biodesel Production. Agricultural Engineering International : the CIGR Ejournal. 12 (1) : 1-12

Alamsyah, R., Junaidi, L., & Loebis E.H. (2010). Penelitian Efektivitas Produksi Biodiesel Minyak Sawit Menggunakan Reaktor Static-Mixer, Warta IHP 27 (2) : 14-24

Alamsyah, R., & Loebis, E.H. (2014). Design and Technical Testing for Crude Biodiesel Reactor Using Dry Methods: Comparison of Energy Analysis, Energy Procedia 47 ( 2014 ) 235 – 241

APCC. (2015). News round-up. Indonesia: Coconut quality in North Sulawesi improves. Cocoinfo International 25 (1) : 2 -8.

Berrios, M., dan Skelton, R.L. (2008). Comparison of Purification Methods for Biodiesel. Chemical Engineering Journal, Science Direct ; 144 (3):459-465.

Braz, J. (2011). Dry Washing in Biodiesel Purification: a Comparative Study of Adsorbents. Chem. Soc 22(3).

Bruce, F. (2018). Coconut Oil Lowers Risk of Heart Desease, Stroke: Study shows. Cocoinfo International 25 (1) : 10 - 11

BSN. (2006). Standard Nasional Indonesia untuk Biodiesel, SNI No. 04-7182-2006.

Demshemino, S., Innocent, O’Donnell, P. Sylvester., Muhammad, F. Yahaya, Isioma Nwadike., dan Linus, N. Okoro. (2013). Comparative Analysis of Biodiesel and Petroleum Diesel. International Journal of Education and Research, 1 (8)

DEN. (2014). Bauran Energi Nasional Sampai Dengan 2050. Dewan Energi Nasional.

Enuko, T. (2017). The Role of Industrialization in Improving The Walfare of Coconut Farmers. Cocoinfo International 24 (2) : 18 - 19

Eugene, V.V. (2011). Cleaner Production Opportunities for Improvement of Carbon Saving in the Production of Coconut Biodiesel, International Journal of Chemical and Environmental Engineering, 2 (5)

Freiberg, A., Scharfe, J., Vanise, C. Murta., & Andreas S. (2018). Generation: A Scoping Review of Health Effects on Humans in Residential and Occupational Settings, Int J Environ Res Public Health. 2018 Feb; 15(2): 354.

Hossain, M.A., Shabab, M. Chowdhury., Rekhu, Y., Khandakar, S. Faraz., & Monzur Ul. (2014). Biodiesel from Coconut Oil: Edward PC Lai. Biodiesel: Environmental Friendly Alternative to Petrodiesel. Lai, J Pet Environ Biotechnol 2014, 5:1.

Jamaran, I. (2008). Model Pengembangan Agroindustry Cocodiesel di Daerah Terpencil, J. Tek. Ind Pert. Vol. 18(1), 1-12

Kemenristek. (2014). 106 INOVASI INDONESIA. Business Innovation Center (BIC)-Kemenristek Indonesia.

Kenga, S.E., Easaa, A.M., Muhamedb, A.M.C., Cheong-H.O., & Chewa, T.T. (2017). Composition and Physicochemical Properties of Fresh and Freeze-Concentrated Coconut (Cocos nucifera) Water. J. Agrobiotech. Vol. 8 (1): 13–24.

Khan, M.Z., Khan, R.U., Khan, F.Z., & Athar M. (2013) Impacts of Biodiesel on The Environment, International Journal of Environmental Engineering and Management 4 (4): 345-350.

Liew, W.H., Hassim, M.H., & Ng, D.K.S. (2014). Review of Evolution, Technology and Sustainability Assessments of Biofuel Production, Journal of Cleaner Production, Vol 17: 11-29.

Mulyana, R. (2014). New, Renewable Energy and Energy Conservation (Nreec): Existing Program & Breakthrough Policies Toward Achieving National Energy Policy Target. Makalah disajikan dalam The 3rd Indonesia EBTKEConEx, JCC, Jakarta 4 Juni 2014.

Mursalin, Haryadi, P., Purnomo, E.A., Andarwulan, N., & Fardiaz, D. (2013). Fraksi Kering Minyak Kelapa Menggunakan Kristalitator Skala 120 kg Untuk Menghasilkan Minyak Kaya Trigliserol Rantai Menengah, Jurnal Litri 19 (1) : 41-49.

Octavia, R.Z. (2011). Pembuatan dan Uji Kualitas Bahan Bakar Alternatif (Biodiesel) dari Minyak Kelapa (Cocos nucifera), Skripsi. Fakultas Sains Dan Teknologi Universitas Islam Negeri (UIN) Alauddin Makassar.

Paul, E., Obeng, V.A.A., & Kresta, S.M. (2003). Handbook of Industrial Mixing. Wiley Interscience, New York.

Paulina, D., Wojciech, R., Piotr, Andrzej, K., Krystyna, A., & Skibniewska. (2013). Biomass as a renewable source of energy. Technical Sciences 16(3): 211–220.

Ratnawati, E., & Riyanto, A. (2013). Pemanfaatan Cocodiesel Berbahan Baku Kelapa sebagai Bahan Bakar Mesin Diesel Stationer. Indonesian Journal of Materials Science 14 (2): 125 – 130.

Susumu, Rusdianasari, & Syahirman Y. (2018). Biodiesel Production from Waste Cooking Oil using Electrostatic Method. ndones. J. Fundam. Appl. Chem., 3(3): 71-76.

Zhang, X. (2014). Toward a Regenerative Paradigm for The Built Environment: from Reason to Reality Sustainability, Journal of Cleaner Production 65 (2014) 3-6.




DOI: http://dx.doi.org/10.32765/warta%20ihp.v36i2.5414

Refbacks

  • There are currently no refbacks.


Copyright (c) 2019 Warta Industri Hasil Pertanian

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Our journal indexed by:


Copyright © Balai Besar Industri Agro, 2018. Powered By OJS 

Theme design credited to MEV edited by Warta IHP

Creative Commons License   
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License