Siti Nurhalimah, Siti Irma Rahmawati, Joko Hermanianto, Siti Nurjanah, Fauzia Nurul Izzati, Eris Septiana, Fauzy Rachman, Bustanussalam Bustanussalam, Yatri Hapsari, Partomuan Simanjuntak, Masteria Yunovilsa Putra



Mangrove endophytic fungi potentially produce secondary metabolites such as antioxidant. Antioxidants are compounds that are widely applied in the industry as an ingredient in the manufacture of products in the food and health sector. In this study, we investigated the antioxidant  potential of secondary metabolites from fungal endophytic of mangrove species Aegiceras corniculatum. A total of eight endophytic fungi were successfully isolated, two isolates from leaf, three isolates from fruit and three isolates from twigBetween the isolates obtained, only one isolated was active as the antioxidant with IC50 value 19.28 µL/mL eventhough still lower than the standard ascorbic acid (6.08 µL/mL). The results of chemical identification using GC-MS showed several chemical compounds that have antioxidant activity including phenol,3,5-bis(1,1-dimethylethyl), hexadecanoic acid, hexadecanoic acid methyl ester, malic acid, N-aminopyrrolidine,  9-octadecanoic acid, methyl ester (E), benzeneethanol, 4-hydroxy, 1,2-benzenedicarboxylic acid, d-tyrosine, bis(2-methylpropyl) ester 1-nonadecene dan heneicosane.  The selected fungal endophytic isolated were identified using molecular Internal Transcribed Spacer (ITS) marker and has a high taxonomy similarity with Microdochium sp.

Keywords: Aegiceras corniculatum, antioxidant, endophytic fungi, mangrove, Microdochium sp



Kapang endofit dari mangrove memiliki potensi dalam menghasilkan metabolit sekunder seperti antioksidan. Antioksidan merupakan senyawa yang banyak diaplikasikan dalam industri sebagai  bahan untuk pembuatan produk di bidang pangan maupun kesehatan. Penelitian ini bertujuan untuk  mengetahui potensi antioksidan kapang endofit dari mangrove species Aegiceras  corniculatum. Sebanyak 8 isolat kapang endofit berhasil diisolasi, yaitu 2 isolat berasal dari daun, 3 isolat berasal dari buah dan 3 isolat berasal dari ranting.  Di antara 8 isolat tersebut, hanya 1 isolat yang dihanyakan aktif sebagai antioksidan dengan nilai IC50  sebesar 19,28 µL/mL, meskipun nilai ini masih lebih rendah dibandingkan vitamin C yaitu sebesar 6,08 µL/mL. Hasil identifikasi kimia dengan menggunakan GC-MS menunjukkan beberapa senyawa kimia yang memiliki aktivitas aktioksidan di antaranya phenol,3,5-bis(1,1-dimethylethyl), hexadecanoic acid, hexadecanoic acid methyl ester, malic acid, N-aminopyrrolidine,  9-octadecanoic acid, methyl ester (E), benzeneethanol, 4-hydroxy, 1,2-benzenedicarboxylic acid, d-tyrosine, bis(2-methylpropyl) ester 1-nonadecene dan heneicosane. Isolat kapang endofit diidentifikasi dengan penanda Internal Transcribed Spacer (ITS) dan memiliki kemiripan tertinggi dengan Microdochium sp.

Kata kunci: Aegiceras corniculatum, antioksidan, kapang endofit, mangrove, Microdochium sp


Aegiceras corniculatum; antioxidant; endophytic fungi; mangrove; Microdochium sp

Full Text:



Alakolanga, A. G. A. W., Kumar, N. S., Jayasinghe, L., & Fujimoto, Y. (2015). Antioxidant property and α -glucosidase , α -amylase and lipase inhibiting activities of Flacourtia inermis fruits : characterization of malic acid as an inhibitor of the enzymes. Journal of Food Science Technology. https://doi.org/10.1007/s13197-015-1937-6

Alvin, A., Kalaitzis, J. A., Sasia, B., & Neilan, B. A. (2016). Combined genetic and bioactivity-based prioritization leads to the isolation of an endophyte-derived antimycobacterial compound. Journal of Applied Microbiology, 120, 1229-1239. https://doi.org/10.1111/jam.13062

Asghar, S. F., Habib-ur-Rehman, Choudahry, M. I., & Atta-ur-Rahman. (2011). Gas chromatography-mass spectrometry (GC-MS) analysis of petroleum ether extract (oil) and bio-assays of crude extract of Iris germanica. International Journal of Genetics and Molecular Biology, 3(August), 95–100.

Basha, N. S., Ogbaghebriel, A., Yemane, K., & Zenebe, M. (2012). Isolation and screening of endophytic fungi from Eritrean traditional medicinal plant Terminalia brownii leaves for antimicrobial activity. International Journal of Green Pharmacy, March, 40–44. https://doi.org/10.4103/0973-8258.97124

Çam, M., Hisil, Y., & Durmaz, G. (2009). Classification of eight pomegranate juices based on antioxidant capacity measured by four methods. Food Chemistry, 112(2009), 721–726. https://doi.org/10.1016/j.foodchem.2008.06.009

Chaudhary, S., Chandrashekar, K. S., Pai, K. S. R., Setty, M. M., Devkar, R. A., Reddy, N. D., & Shoja, M. H. (2015). Evaluation of antioxidant and anticancer activity of extract and fractions of Nardostachys jatamansi DC in breast carcinoma. BMC Complementary and Alternative Medicine, 15(1), 50.

Chen, Y., Mao, W., Tao, H., Zhu, W., Qi, X., Chen, Y., Li, H., Zhao, C., Yang, Y., Hou, Y., Wang, C., & Li, N. (2011). Structural characterization and antioxidant properties of an exopolysaccharide produced by the mangrove endophytic fungus Aspergillus sp. Y16. Bioresource Technology, 102(17), 8179–8184. https://doi.org/10.1016/j.biortech.2011.06.048

Chi, C. F., Wang, B., Wang, Y. M., Zhang, B., & Deng, S. G. (2015). Isolation and characterization of three antioxidant peptides from protein hydrolysate of bluefin leatherjacket (Navodon septentrionalis) heads. Journal of Functional Foods, 12(2015), 1–10. https://doi.org/10.1016/j.jff.2014.10.027

Costa, I. P. M. W., Maia, L. C., Cavalcanti, M. A. (2012). Diversity of leaf endophytic fungi in mangrove plants of northeast Brazil. Brazilian Journal of Microbiology, 1165–1173.

De Souza Sebastianes, F. L., Romão-Dumaresq, A. S., Lacava, P. T., Harakava, R., Azevedo, J. L., De Melo, I. S., & Pizzirani-Kleiner, A. A. (2013). Species diversity of culturable endophytic fungi from Brazilian mangrove forests. Current Genetics, 59(3), 153–166. https://doi.org/10.1007/s00294-013-0396-8

Debbab, A., Aly, A. H., & Proksch, P. (2013). Mangrove derived fungal endophytes – a chemical and biological perception. Fungal Diversity, 61(1), 1–27. https://doi.org/10.1007/s13225-013-0243-8

Deshmukh, S., Gupta, M., Prakash, V., Reddy, M. S., Deshmukh, S. K., Gupta, M. K., Prakash, V., & Reddy, M. S. (2018). Mangrove-Associated Fungi: A Novel Source of Potential Anticancer Compounds. Journal of Fungi, 4(3), 101. https://doi.org/10.3390/jof4030101

Druzian, P.S., Pinheiro, N.L., Susin, N.M.B., Dal Pra V., Mazutti, M.A., Kuhn R.C., Terra L de M. 2019. Production of metabolites with antioxidant activity by Botryosphaeria dothidea in submerged fermentation. Bioprocess Biosyst.Eng.doi.org/10.1007/s00449-019-02200-y.

Ernst, M., Neubert, K., Mendgen, K.W., & Wirsel SGR. (2011). Niche differentiation of two sympatric species of Microdochium colonizing the roots of common red. BMC Microbiol, 11, 242. doi:10.1186/1417-2180-11-242.

Ezhilan, B. P., & Neelamegam, R. (2011). GC-MS analysis of phytocomponents in the ethanol extract of Polygonum chinense L . Pharmacognosy Research, 4(1), 11–15. https://doi.org/10.4103/0974-8490.91028

Gagkaeva, T.Y., Orina, A.S., Gavrilona, O.P., & Gogina NN. (2020). Evidence of Microdochium fungi associated with cereal grains in Rusia. Microorganisms, 8, 340. https://doi.or/10.3390/microorganisms8030340

Hamed, I., Özogul, F., Özogul, Y., & Regenstein, J. M. (2015). Marine Bioactive Compounds and Their Health Benefits: A Review. Comprehensive Reviews in Food Science and Food Safety, 14(4), 446–465. https://doi.org/10.1111/1541-4337.12136

Hamzah, T. N. T., Lee, S. Y., Hidayat, A., Terhem, R., Faridah-Hanum, I., & Mohamed, R. (2018). Diversity and Characterization of Endophytic Fungi Isolated From the Tropical Mangrove Species, Rhizophora mucronata, and Identification of Potential Antagonists Against the Soil-Borne Fungus, Fusarium solani. Frontiers in Microbiology, 9, 1707. https://doi.org/10.3389/fmicb.2018.01707

Handayani, D., Rivai, H., Hutabarat, M., & Rasyid, R. (2017). Antibacterial Activity of Endophytic Fungi Isolated from Mangrove Plant Sonneratia griffithii Kurz. Journal of Applied Pharmaceutical Science, 7(04), 209–212. https://doi.org/10.7324/JAPS.2017.70431

Hernándes-Restrepo, M., Groenewald, J.Z., & Crous, P.W. (2016). Taxonomic and phylogenetic re-evaluation of Microdochium, Monographella and Idriella. Persoonia, 36, 57-82. https://doi.org/10.3767/003158516X688676

Hong, S.K., Kim, W.G., Choi, H.W., Lee SY. (2008). Identification of Microdochium bolleyi associated with basal rot of creeping bent grass in Korea. Mycobiology, 36(2), 77-80. https://doi.org/10.4489/MYCO.2008.36.2.077

Ibrahim, M., Kaushik, N., Sowemimo, A., Chippa, H., Koekemoer, T., Van de venter M., Odukoya, O. A. (2017). Antifungal and antipoliferative activities of endophytic fungi isolated from the leaves of Markhamia tomentosa. Pharmaceutical Biology, 55(1), 590-595. https://doi.org/ 10.1080/13880209.2016.1263671

Kumar, S., Kaushik, N., & Energy, T. (2013). Batch Culture Fermentation of Endophytic Fungi and Extraction of Their Metabolites. January, 1–6. https://doi.org/10.21769/BioProtoc.926

Li, J.-L., Sun, X., Chen, L., & Guo, L.-D. (2016). Community structure of endophytic fungi of four mangrove species in Southern China. Mycology, 7(4), 180–190. https://doi.org/10.1080/21501203.2016.1258439

Liu, Y., Zachow, C., Raaijmakers, J.M., & de Bruijn, I. (2016). Elucidating the diversity of aquatic Microdochium and Trichoderma species and their activity agains the fish pathogen Saprolegnia diclina. International Journal of Molecular Sciences, 17(1), 140-154. https://doi.org/ 10.3390/ijms17010140

Manimaran, M., & Krishnan, K. (2017). Marine Sp. VITMK1 derived Pyrrolo [1,2-A] Pyrazine-1,4-Dione, Hexahydro-3-(2-Methylpropyl) and its free radical scavenging activity. The Open Bioactive Compounds https://doi.org/10.2174/1874847301705010023

Mukhlis, D. K., Rozirwan., & Hendri, M. (2018). Isolasi dan aktivitas antibakteri jamur endofit pada mangrove rhizophora apiculata dari kawasan mangrove tanjung api-api kabupaten banyuasin sumatera selatan. Maspari Journal, 10(2), 151–160.

Patra, J. K., Das, G., & Baek, K. H. (2015). Chemical composition and antioxidant and antibacterial activities of an essential oil extracted from an edible seaweed, Laminaria japonica L. Molecules, 20(7), 12093–12113. https://doi.org/10.3390/molecules200712093

Premathilaka, R., & Silva, M. (2016). Bioactive Compounds and Antioxidant Activity of Bunchosia armenica. World Journal of Pharmacy and Pharmaceutical Sciences, 5(10), 1237–1247. https://doi.org/10.20959/wjpps201610-7783

Prihanto, A. A., Firdaus, M., & Nurdiani, R. (2011). Endophytic Fungi Isolated from Mangrove (Rhyzopora mucronata) and Its Antibacterial Activity on Staphylococcus aureus and Escherichia coli. Journal of Food Science and Engineering, 1(2011), 386–389.

Radhakrishnan, C. A. E. K. (2017). Metabolite analysis of endophytic fungi from cultivars of Zingiber officinale Rosc . identifies myriad of bioactive compounds including tyrosol. 3 Biotech, 7(2), 1–10. https://doi.org/10.1007/s13205-017-0768-8

Rachman, F., Mubarik, N.R, Simanjuntak, P. (2018). Aktivitas antioksidan ekstrak kapang endofit cb.gm.b3 asal ranting kayu manis (Cinnamomum burmanni). Jurnal Bioteknologi & Bioscience Indonesia, 5(2):204–213.

Rahman, M. M., Ahmad, S. H., Mohamed, M. T. M., & Rahman, M. Z. A. (2014). Antimicrobial Compounds from Leaf Extracts of Jatropha curcas, Psidium guajava, and Andrographis paniculata. The Scientific World Journal. doi.org/10.1155/2014/635240

Rahmawati, S., Izzati, F., Yapsari, Y., Septiana, E., Rachman, F., Bustanussalam, & Simanjuntak, P. (2019). Endophytic microbes and antioxidant activities of secondary metabolites from mangroves Avicennia marina and Xylocarpus granatum Endophytic microbes and antioxidant activities of secondary metabolites from mangroves Avicennia marina and Xylocarpus granatum. IOP Conf. Series: Earth and Enviromental Science. https://doi.org/10.1088/1755-1315/278/1/012065

Rajamanikyam, M., Vadlapudi, V., amanchy, R., Upadhyayula, S. M., Rajamanikyam, M., Vadlapudi, V., amanchy, R., & Upadhyayula, S. M. (2017). Endophytic Fungi as Novel Resources of natural Therapeutics. Brazilian Archives of Biology and Technology, 60(0). https://doi.org/10.1590/1678-4324-2017160542

Sari, R. P., & Hasibuan, M. P. (2017). Uji Potensi Antimikroba Biji Tumbuhan Mangrove (Avicennia Marina Sp.) Sebagai Upaya Pemberantas Penyakit Kepiting Bakau (Scylla Serrata). Jurnal IPA & Pembelajaran IPA, 1(2), 113–120. https://doi.org/10.24815/jipi.v1i2.9685.

Strobel, G., Daisy, B., Castillo, U., & Harper, J. (2004). Natural Products from Endophytic Microorganisms . Journal of Natural Products, 67(2), 257–268. https://doi.org/10.1021/np030397v

Tavadyan, L. A., Manukyan, Z. H., Harutyunyan, L. H., Musayelyan, M. V, Sahakyan, A. D., & Tonikyan, H. G. (2017). Antioxidant Properties of Selenophene, Thiophene and Their Aminocarbonitrile Derivatives. Antioxidants. https://doi.org/10.3390/antiox6020022

Vijaya, T. (2017). Derived From Marine Fungal Endophytes ; a Review. Indo Amaerican Journal of Pharmaceutical Research, 7(01).

Wardani, S. H., Rismawan, T., & Bahri, S. (2016). Aplikasi Klasifikasi Jenis Tumbuhan Mangrove Berdasarkan Karakteristik Morfologi Menggunakan Metode K-Nearest Neighbor (KNN) Berbasis Web. Coding Jurnal Komputer Dan Aplikasi Untan, 4(3), 9–21.

Wei, S., Lin, Y., Liao, M., Zhou, H., & Li, Y. (2011). Characterization and Antioxidative Properties of Condensed Tannins from the Mangrove Plant Aegiceras corniculatum. Journal of Applied Polymer Science, 124, 2463–2472. https://doi.org/10.1002/app

Widowati, T., Sukiman, H., & Simanjuntak, P. (2016). Isolasi dan identifikasi kapang endofit dari tanaman kunyit (Curcuma longa L) sebagai penghasil antioksidan. Biopropal Industri, 7(1), 9–16.

Yan, Z., Huang, C., Guo, H., Zheng, S., He, J., Lin, J., & Long, Y. (2020). Isobenzofuranone monomer and dimer derivatives from the mangrove endophytic fungus Epicoccum nigrum SCNU-F0002 possess α-glucosidase inhibitory and antioxidant activity. Bioorganic Chemistry, 94(November 2019), 103407. https://doi.org/10.1016/j.bioorg.2019.103407

Zhang, G., Sun, S., Zhu, T., Lin, Z., Gu, J., Li, D., & Gu, Q. (2011). Antiviral isoindolone derivatives from an endophytic fungus Emericella sp. associated with Aegiceras corniculatum. Phytochemistry, 72(11–12), 1436–1442. https://doi.org/10.1016/j.phytochem.2011.04.014

Zhou, J., Diao, X., Wang, T., Chen, G., Lin, Q., Yang, X., & Xu, J. (2018). Phylogenetic diversity and antioxidant activities of culturable fungal endophytes associated with the mangrove species Rhizophora stylosa and R. mucronata in the South China Sea. PloS One, 13(6), e0197359. https://doi.org/10.1371/journal.pone.0197359

DOI: http://dx.doi.org/10.36974/jbi.v12i1.6539


  • There are currently no refbacks.

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.


Published by :

Institute for Industrial Research and Standardization (Baristand Industri) in Pontianak

Agency for Industrial Research and Development, Ministry of Industry 

Jl. Budi Utomo No. 41 Pontianak, West Kalimantan, Indonesia

Tel / Fax : +62 561 881393, 881533

email      : biopropal.industri@gmail.com


BIOPROPAL Industri indexed in: 

Hasil gambar untuk gambar doajHasil gambar untuk gambar google scholar

RJI Main logo